108 research outputs found
Results of two multi-chord stellar occultations by dwarf planet (1) Ceres
We report the results of two multi-chord stellar occultations by the dwarf
planet (1) Ceres that were observed from Brazil on 2010 August 17, and from the
USA on 2013 October 25. Four positive detections were obtained for the 2010
occultation, and nine for the 2013 occultation. Elliptical models were adjusted
to the observed chords to obtain Ceres' size and shape. Two limb fitting
solutions were studied for each event. The first one is a nominal solution with
an indeterminate polar aspect angle. The second one was constrained by the pole
coordinates as given by Drummond et al. Assuming a Maclaurin spheroid, we
determine an equatorial diameter of 972 6 km and an apparent oblateness
of 0.08 0.03 as our best solution. These results are compared to all
available size and shape determinations for Ceres made so far, and shall be
confirmed by the NASA's Dawn space mission.Comment: 9 pages, 6 figures. Accepted for publication in MNRA
Hyperarchiver an Epics Archiver Prototype based on Hypertable
This work started in the context of NSLS2 project at Brookhaven National Laboratory. The NSLS2 control system foresees a very high number of PV variables and has strict requirements in terms of archiving retrieving rate our goal was to store 10K PV sec and retrieve 4K PV sec for a group of 4 signals. The HyperArchiver [1] is an EPICS [2] Archiver implementation engined by Hypertable, an open source database whose internal architecture is derived from Google s Big Table. We discuss the performance of HyperArchiver and present the results of some comparative test
Physicians’ misperceived cardiovascular risk and therapeutic inertia as determinants of low LDL-cholesterol targets achievement in diabetes
Background: Greater efforts are needed to overcome the worldwide reported low achievement of LDL-c targets. This survey aimed to dissect whether and how the physician-based evaluation of patients with diabetes is associated with the achievement of LDL-c targets. Methods: This cross-sectional self-reported survey interviewed physicians working in 67 outpatient services in Italy, collecting records on 2844 patients with diabetes. Each physician reported a median of 47 records (IQR 42–49) and, for each of them, the physician specified its perceived cardiovascular risk, LDL-c targets, and the suggested refinement in lipid-lowering-treatment (LLT). These physician-based evaluations were then compared to recommendations from EAS/EASD guidelines. Results: Collected records were mostly from patients with type 2 diabetes (94%), at very-high (72%) or high-cardiovascular risk (27%). Physician-based assessments of cardiovascular risk and of LDL-c targets, as compared to guidelines recommendation, were misclassified in 34.7% of the records. The misperceived assessment was significantly higher among females and those on primary prevention and was associated with 67% lower odds of achieving guidelines-recommended LDL-c targets (OR 0.33, p < 0.0001). Peripheral artery disease, target organ damage and LLT-initiated by primary-care-physicians were all factors associated with therapeutic-inertia (i.e., lower than expected probability of receiving high-intensity LLT). Physician-suggested LLT refinement was inadequate in 24% of overall records and increased to 38% among subjects on primary prevention and with misclassified cardiovascular risk. Conclusions: This survey highlights the need to improve the physicians’ misperceived cardiovascular risk and therapeutic inertia in patients with diabetes to successfully implement guidelines recommendations into everyday clinical practice
Hardware Commissioning of the Refurbished ALPI Linac at INFN-LNL to Serve as SPES Exotic Beam Accelerator
Abstract
The ALPI linac at INFN-LNL was substantially refurbished in 2018, especially in view of its use as secondary accelerator for exotic species in the framework of the SPES project. In particular: 10 magnetic triplets were replaced with higher gradient ones; two cryomodules with quarter wave resonator were moved from the PIAVE injector to ALPI, so as to make them available both for exotic and stable beams; the cryogenic plant was renovated; the whole linac, its injector and its beam lines were eventually realigned via LASER tracking (LT). The expected outcome of the refurbishment project is a larger beam transmission (crucial for the efficient transport of the unavoidably low current exotic beams) and improved overall reliability so as to further extend the lifetime of an already 25 years old machine. The hardware commissioning of this new configuration will be reported
The Size, Shape, Albedo, Density, and Atmospheric Limit of Transneptunian Object (50000) Quaoar from Multi-chord Stellar Occultations
We present results derived from the first multi-chord stellar occultations by the transneptunian object (50000) Quaoar, observed on 2011 May 4 and 2012 February 17, and from a single-chord occultation observed on 2012 October 15. If the timing of the five chords obtained in 2011 were correct, then Quaoar would possess topographic features (crater or mountain) that would be too large for a body of this mass. An alternative model consists in applying time shifts to some chords to account for possible timing errors. Satisfactory elliptical fits to the chords are then possible, yielding an equivalent radius R [SUB]equiv[/SUB] = 555 ± 2.5 km and geometric visual albedo p[SUB]V[/SUB] = 0.109 ± 0.007. Assuming that Quaoar is a Maclaurin spheroid with an indeterminate polar aspect angle, we derive a true oblateness of \epsilon = 0.087^{+0.0268}_{-0.0175}, an equatorial radius of 569^{+24}_{-17} km, and a density of 1.99 ± 0.46 g cm[SUP]–3[/SUP]. The orientation of our preferred solution in the plane of the sky implies that Quaoar's satellite Weywot cannot have an equatorial orbit. Finally, we detect no global atmosphere around Quaoar, considering a pressure upper limit of about 20 nbar for a pure methane atmosphere.Peer reviewe
Refined physical parameters for Chariklo’s body and rings from stellar occultations observed between 2013 and 2020
Context. The Centaur (10199) Chariklo has the first ring system discovered around a small object. It was first observed using stellar occultation in 2013. Stellar occultations allow sizes and shapes to be determined with kilometre accuracy, and provide the characteristics of the occulting object and its vicinity. Aims. Using stellar occultations observed between 2017 and 2020, our aim is to constrain the physical parameters of Chariklo and its rings. We also determine the structure of the rings, and obtain precise astrometrical positions of Chariklo. Methods. We predicted and organised several observational campaigns of stellar occultations by Chariklo. Occultation light curves were measured from the datasets, from which ingress and egress times, and the ring widths and opacity values were obtained. These measurements, combined with results from previous works, allow us to obtain significant constraints on Chariklo's shape and ring structure. Results. We characterise Chariklo's ring system (C1R and C2R), and obtain radii and pole orientations that are consistent with, but more accurate than, results from previous occultations. We confirm the detection of W-shaped structures within C1R and an evident variation in radial width. The observed width ranges between 4.8 and 9.1 km with a mean value of 6.5 km. One dual observation (visible and red) does not reveal any differences in the C1R opacity profiles, indicating a ring particle size larger than a few microns. The C1R ring eccentricity is found to be smaller than 0.022 (3σ), and its width variations may indicate an eccentricity higher than ~0.005. We fit a tri-axial shape to Chariklo's detections over 11 occultations, and determine that Chariklo is consistent with an ellipsoid with semi-axes of 143.8-1.5+1.4, 135.2-2.8+1.4, and 99.1-2.7+5.4 km. Ultimately, we provided seven astrometric positions at a milliarcsecond accuracy level, based on Gaia EDR3, and use it to improve Chariklo's ephemeris
- …