1,851 research outputs found

    Response of a CMS HGCAL silicon-pad electromagnetic calorimeter prototype to 20-300 GeV positrons

    Full text link
    The Compact Muon Solenoid Collaboration is designing a new high-granularity endcap calorimeter, HGCAL, to be installed later this decade. As part of this development work, a prototype system was built, with an electromagnetic section consisting of 14 double-sided structures, providing 28 sampling layers. Each sampling layer has an hexagonal module, where a multipad large-area silicon sensor is glued between an electronics circuit board and a metal baseplate. The sensor pads of approximately 1 cm2^2 are wire-bonded to the circuit board and are readout by custom integrated circuits. The prototype was extensively tested with beams at CERN's Super Proton Synchrotron in 2018. Based on the data collected with beams of positrons, with energies ranging from 20 to 300 GeV, measurements of the energy resolution and linearity, the position and angular resolutions, and the shower shapes are presented and compared to a detailed Geant4 simulation

    Performance of the CMS High Granularity Calorimeter prototype to charged pion beams of 20−-300 GeV/c

    Full text link
    The upgrade of the CMS experiment for the high luminosity operation of the LHC comprises the replacement of the current endcap calorimeter by a high granularity sampling calorimeter (HGCAL). The electromagnetic section of the HGCAL is based on silicon sensors interspersed between lead and copper (or copper tungsten) absorbers. The hadronic section uses layers of stainless steel as an absorbing medium and silicon sensors as an active medium in the regions of high radiation exposure, and scintillator tiles directly readout by silicon photomultipliers in the remaining regions. As part of the development of the detector and its readout electronic components, a section of a silicon-based HGCAL prototype detector along with a section of the CALICE AHCAL prototype was exposed to muons, electrons and charged pions in beam test experiments at the H2 beamline at the CERN SPS in October 2018. The AHCAL uses the same technology as foreseen for the HGCAL but with much finer longitudinal segmentation. The performance of the calorimeters in terms of energy response and resolution, longitudinal and transverse shower profiles is studied using negatively charged pions, and is compared to GEANT4 predictions. This is the first report summarizing results of hadronic showers measured by the HGCAL prototype using beam test data.Comment: To be submitted to JINS

    Observation of tW production in the single-lepton channel in pp collisions at root s=13 TeV

    Get PDF
    A measurement of the cross section of the associated production of a single top quark and a W boson in final states with a muon or electron and jets in proton-proton collisions at root s = 13 TeV is presented. The data correspond to an integrated luminosity of 36 fb(-1) collected with the CMS detector at the CERN LHC in 2016. A boosted decision tree is used to separate the tW signal from the dominant t (t) over bar background, whilst the subleading W+jets and multijet backgrounds are constrained using data-based estimates. This result is the first observation of the tW process in final states containing a muon or electron and jets, with a significance exceeding 5 standard deviations. The cross section is determined to be 89 +/- 4 (stat) +/- 12 (syst) pb, consistent with the standard model.Peer reviewe

    Measurement of double-parton scattering in inclusive production of four jets with low transverse momentum in proton-proton collisions at s \sqrt{s} = 13 TeV

    Get PDF
    A measurement of inclusive four-jet production in proton-proton collisions at a center-of-mass energy of 13 TeV is presented. The transverse momenta of jets within |η| < 4.7 are required to exceed 35, 30, 25, and 20 GeV for the first-, second-, third-, and fourth-leading jet, respectively. Differential cross sections are measured as functions of the jet transverse momentum, jet pseudorapidity, and several other observables that describe the angular correlations between the jets. The measured distributions show sensitivity to different aspects of the underlying event, parton shower modeling, and matrix element calculations. In particular, the interplay between angular correlations caused by parton shower and double-parton scattering contributions is shown to be important. The double-parton scattering contribution is extracted by means of a template fit to the data, using distributions for single-parton scattering obtained from Monte Carlo event generators and a double-parton scattering distribution constructed from inclusive single-jet events in data. The effective double-parton scattering cross section is calculated and discussed in view of previous measurements and of its dependence on the models used to describe the single- parton scattering background

    Measurements of the pp → W±^{±}γγ and pp → Zγγ cross sections at s\sqrt{s} = 13 TeV and limits on anomalous quartic gauge couplings

    Get PDF
    The cross section for W or Z boson production in association with two photons is measured in proton-proton collisions at a centre-of-mass energy of 13 TeV. The data set corresponds to an integrated luminosity of 137 fb−1^{-1} collected by the CMS experiment at the LHC. The W → â„“Îœ and Z → ℓℓ decay modes (where ℓ = e, ÎŒ) are used to extract the Wγγ and Zγγ cross sections in a phase space defined by electron (muon) with transverse momentum larger than 30 GeV and photon transverse momentum larger than 20 GeV. All leptons and photons are required to have absolute pseudorapidity smaller than 2.5. The measured cross sections in this phase space are σ(Wγγ) = 13.6+1.9^{+1.9}−1.9_{−1.9}(stat)+4.0^{+4.0}−4.0_{−4.0}(syst) ± 0.08 (PDF + scale) fb and σ(Zγγ) = 5.41+0.58^{+0.58}−0.55_{−0.55}(stat)+0.64^{+0.64}−.070_{−.070}(syst) ± 0.06 (PDF + scale) fb. Limits on anomalous quartic gauge couplings are set in the framework of an effective field theory with dimension-8 operators

    Inclusive nonresonant multilepton probes of new phenomena at s\sqrt{s}= 13 TeV

    Get PDF
    An inclusive search for nonresonant signatures of beyond the standard model (SM) phenomena in events with three or more charged leptons, including hadronically decaying τ leptons, is presented. The analysis is based on a data sample corresponding to an integrated luminosity of 138 fb−1^{-1} of proton-proton collisions at s\sqrt{s}= 13 TeV collected by the CMS experiment at the LHC in 2016–2018. Events are categorized based on the lepton and b-tagged jet multiplicities and various kinematic variables. Three scenarios of physics beyond the SM are probed, and signal-specific boosted decision trees are used for enhancing sensitivity. No significant deviations from the background expectations are observed. Lower limits are set at 95% confidence level on the mass of type-III seesaw heavy fermions in the range 845–1065 GeV for various decay branching fraction combinations to SM leptons. Doublet and singlet vectorlike τ lepton extensions of the SM are excluded for masses below 1045 GeV and in the mass range 125–150 GeV, respectively. Scalar leptoquarks decaying exclusively to a top quark and a lepton are excluded below 1.12–1.42 TeV, depending on the lepton flavor. For the type-III seesaw as well as the vectorlike doublet model, these constraints are the most stringent to date. For the vectorlike singlet model, these are the first constraints from the LHC experiments. Detailed results are also presented to facilitate alternative theoretical interpretations

    Search for high-mass resonances decaying to a jet and a Lorentz-boosted resonance in proton-proton collisions at √s = 13 TeV

    Get PDF
    A search is reported for high-mass hadronic resonances that decay to a parton and a Lorentz-boosted resonance, which in turn decays into a pair of partons. The search is based on data collected with the CMS detector at the LHC in proton-proton collisions at , corresponding to an integrated luminosity of 138. The boosted resonance is reconstructed as a single wide jet with substructure consistent with a two-body decay. The high-mass resonance is thus considered as a dijet system. The jet substructure information and the kinematic properties of cascade resonance decays are exploited to disentangle the signal from the large quantum chromodynamics multijet background. The dijet mass spectrum is analyzed for the presence of new high-mass resonances, and is found to be consistent with the standard model background predictions. Results are interpreted in a warped extra dimension model where the high-mass resonance is a Kaluza–Klein gluon, the boosted resonance is a radion, and the final state partons are all gluons. Limits on the production cross section are set as a function of the Kaluza–Klein gluon and radion masses. These limits exclude at 95% confidence level models with Kaluza–Klein gluon masses in the range 2.0 to 4.3 TeV and radion masses in the range 0.20 to 0.74 TeV. By exploring a novel experimental signature, the observed limits on the Kaluza–Klein gluon mass are extended by up to about 1 TeV compared to previous searches

    Measurement of inclusive and differential cross sections for single top quark production in association with a W boson in proton-proton collisions at s \sqrt{s} = 13 TeV

    Get PDF
    Measurements of the inclusive and normalised differential cross sections are presented for the production of single top quarks in association with a W boson in proton-proton collisions at a centre-of-mass energy of 13 TeV. The data used were recorded with the CMS detector at the LHC during 2016-2018, and correspond to an integrated luminosity of 138 fb−1^{−1}. Events containing one electron and one muon in the final state are analysed. For the inclusive measurement, a multivariate discriminant, exploiting the kinematic properties of the events is used to separate the signal from the dominant ttˉt\bar{t} background. A cross section of 79.2 ± 0.9 (stat) −8.0+7.7^{+7.7}_{−8.0} (syst) ± 1.2 (lumi) pb is obtained, consistent with the predictions of the standard model. For the differential measurements, a fiducial region is defined according to the detector acceptance, and the requirement of exactly one jet coming from the fragmentation of a bottom quark. The resulting distributions are unfolded to particle level and agree with the predictions at next-to-leading order in perturbative quantum chromodynamics
    • 

    corecore