93 research outputs found

    A pilot study of the use of the oral and faecal microbiota for the diagnosis of ulcerative colitis and Crohn's disease in a paediatric population

    Get PDF
    Crohn's disease (CD) and ulcerative colitis (UC) are chronic inflammatory bowel diseases (IBD) that affect the gastrointestinal tract. Changes in the microbiome and its interaction with the immune system are thought to play a key role in their development. The aim of this study was to determine whether metagenomic analysis is a feasible non-invasive diagnostic tool for IBD in paediatric patients. A pilot study of oral and faecal microbiota was proposed with 36 paediatric patients divided in three cohorts [12 with CD, 12 with UC and 12 healthy controls (HC)] with 6 months of follow-up. Finally, 30 participants were included: 13 with CD, 11 with UC and 8 HC (6 dropped out during follow-up). Despite the small size of the study population, a differential pattern of microbial biodiversity was observed between IBD patients and the control group. Twenty-one bacterial species were selected in function of their discriminant accuracy, forming three sets of potential markers of IBD. Although IBD diagnosis requires comprehensive medical evaluation, the findings of this study show that faecal metagenomics or a reduced set of bacterial markers could be useful as a non-invasive tool for an easier and earlier diagnosis

    The theory of canonical perturbations applied to attitude dynamics and to the Earth rotation. Osculating and nonosculating Andoyer variables

    Full text link
    The Hamiltonian theory of Earth rotation, known as the Kinoshita-Souchay theory, operates with nonosculating Andoyer elements. This situation parallels a similar phenomenon that often happens (but seldom gets noticed) in orbital dynamics, when the standard Lagrange-type or Delaunay-type planetary equations unexpectedly render nonosculating orbital elements. In orbital mechanics, osculation loss happens when a velocity-dependent perturbation is plugged into the standard planetary equations. In attitude mechanics, osculation is lost when an angular-velocity-dependent disturbance is plugged in the standard dynamical equations for the Andoyer elements. We encounter exactly this situation in the theory of Earth rotation, because this theory contains an angular-velocity-dependent perturbation (the switch from an inertial frame to that associated with the precessing ecliptic of date). While the osculation loss does not influence the predictions for the figure axis of the planet, it considerably alters the predictions for the instantaneous spin-axis' orientation. We explore this issue in great detail

    Design and implementation of synchronization and AGC for OFDM-based WLAN receivers

    Get PDF
    An efficient implementation of several tasks at the receiver becomes crucial in OFDM-based high-speed WLAN systems, such as automatic gain control, time and frequency synchronization and offset tracking. This paper deals with fixed point constraints and accuracy requirements for implementation of those algorithms. Also, a complete set of thresholds for the practical implementation of time and frequency synchronization sub-blocks is obtained. Moreover, a technique to mitigate the remaining frequency offset after coarse acquisition is proposed, yielding a good trade-off between performance and complexity. Finally, we propose the implementation of a simple and effective automatic gain control procedure.This work has been partially funded by Spanish government with project TIC 2002-03498 (ORISE), Telefonica I+D by the contract nº 25756, and the Chamber of Madrid Community and European Social Fund by a grant to the first author

    Detection of Phase Jumps of Free Core Nutation of the Earth and their Concurrence with Geomagnetic Jerks

    Get PDF
    We detected phase jumps of the Free Core Nutation (FCN) of the Earth directly from the analysis of the Very Long Baseline Interferometer (VLBI) observation of the Earth rotation for the period 1984-2003 by applying the Weighted Wavelet Z-Transform (WWZ) method and the Short-time Periodogram with the Gabor function (SPG) method. During the period, the FCN had two significant phase jumps in 1992 and 1998. These epochs coincide with the reported occurrence of geomagnetic jerks.Comment: 8 pages, 4 figure

    Prospects in the orbital and rotational dynamics of the Moon with the advent of sub-centimeter lunar laser ranging

    Get PDF
    Lunar Laser Ranging (LLR) measurements are crucial for advanced exploration of the laws of fundamental gravitational physics and geophysics. Current LLR technology allows us to measure distances to the Moon with a precision approaching 1 millimeter. As NASA pursues the vision of taking humans back to the Moon, new, more precise laser ranging applications will be demanded, including continuous tracking from more sites on Earth, placing new CCR arrays on the Moon, and possibly installing other devices such as transponders, etc. Successful achievement of this goal strongly demands further significant improvement of the theoretical model of the orbital and rotational dynamics of the Earth-Moon system. This model should inevitably be based on the theory of general relativity, fully incorporate the relevant geophysical processes, lunar librations, tides, and should rely upon the most recent standards and recommendations of the IAU for data analysis. This paper discusses methods and problems in developing such a mathematical model. The model will take into account all the classical and relativistic effects in the orbital and rotational motion of the Moon and Earth at the sub-centimeter level. The new model will allow us to navigate a spacecraft precisely to a location on the Moon. It will also greatly improve our understanding of the structure of the lunar interior and the nature of the physical interaction at the core-mantle interface layer. The new theory and upcoming millimeter LLR will give us the means to perform one of the most precise fundamental tests of general relativity in the solar system.Comment: 26 pages, submitted to Proc. of ASTROCON-IV conference (Princeton Univ., NJ, 2007

    Synthetic Fatty Acids Prevent Plasmid-Mediated Horizontal Gene Transfer

    Get PDF
    Bacterial conjugation constitutes a major horizontal gene transfer mechanism for the dissemination of antibiotic resistance genes among human pathogens. Antibiotic resistance spread could be halted or diminished by molecules that interfere with the conjugation process. In this work, synthetic 2-alkynoic fatty acids were identified as a novel class of conjugation inhibitors. Their chemical properties were investigated by using the prototype 2-hexadecynoic acid and its derivatives. Essential features of effective inhibitors were the carboxylic group, an optimal long aliphatic chain of 16 carbon atoms, and one unsaturation. Chemical modification of these groups led to inactive or less-active derivatives. Conjugation inhibitors were found to act on the donor cell, affecting a wide number of pathogenic bacterial hosts, including Escherichia, Salmonella, Pseudomonas, and Acinetobacter spp. Conjugation inhibitors were active in inhibiting transfer of IncF, IncW, and IncH plasmids, moderately active against IncI, IncL/M, and IncX plasmids, and inactive against IncP and IncN plasmids. Importantly, the use of 2-hexadecynoic acid avoided the spread of a derepressed IncF plasmid into a recipient population, demonstrating the feasibility of abolishing the dissemination of antimicrobial resistances by blocking bacterial conjugation.The work performed by the F.D.L.C. group was supported by grants BFU2011-26608 from the Spanish Ministry of Economy and Competitiveness and 612146/FP7-ICT-2013-10 and 282004/FP7-HEALTH-2011-2.3.1-2 from the European Seventh Framework Programme. The work performed by M.G. was supported by a Ph.D. fellowship from the University of Cantabria. The work performed by D.J.S.-R. was supported by the National Center for Research Resources and the National Institute of General Medical Sciences of the National Institutes of Health through grant no. 5P20GM103475-13 and the Interamerican University of Puerto Rico. The work performed by J.C.-G. was supported by an EMBO postdoctoral fellowship, ASTF 402-2010. The work performed by Biomar Microbial Technologies was supported by grant 282004/FP7-HEALTH-2011-2.3.1-2 from the European Seventh Framework Programme.USD 2,190 APC fee funded by the EC FP7 Post-Grant Open Access PilotPeer reviewe

    Free polar motion of a triaxial and elastic body in Hamiltonian formalism: Application to the Earth and Mars

    Get PDF
    The purpose of this paper is to show how to solve in Hamiltonian formalism the equations of the polar motion of any arbitrarily shaped elastic celestial body, i.e. the motion of its rotation axis ( or angular momentum) with respect to its figure axis. With this aim, we deduce from canonical equations related to the rotational Hamiltonian of the body, the analytical solution for its free polar motion which depends both on the elasticity and on its moments of inertia. In particular, we study the influence of the phase angle delta, responsible for the dissipation, on the damping of the polar motion. In order to validate our analytical equations, we show that, to first order, they are in complete agreement with those obtained from the classical Liouville equations. Then we adapt our calculations to the real data obtained from the polar motion of the Earth (polhody). For that purpose, we characterize precisely the differences in radius J - chi and in angle l - theta between the polar coordinates (chi, theta) and ( J, l) representing respectively the motion of the axis of rotation of the Earth and the motion of its angular momentum axis, with respect to an Earth-fixed reference frame, after showing the influence of the choice of the origin on these coordinates, and on the determination of the Chandler period as well. Then we show that the phase lag delta responsible for the damping for the selected time interval, between Feb. 1982 and Apr. 1990, might be of the order of delta approximate to 6degrees, according to a numerical integration starting from our analytical equations. Moreover, we emphasize the presence in our calculations for both. and., of an oscillation with a period T(Chandler)/2, due to the triaxial shape of our planet, and generally not taken into account. In a last step, we apply our analytical formulation to the polar motion of Mars, thus showing the high dependence of its damping on the poorly known value of its Love number k. Moreover we emphasize the large oscillations of Mars' polar motion due to the triaxiality of this planet

    Conjugation inhibitors compete with palmitic acid for binding to the conjugative traffic ATPaseTrwD, providing a mechanism to inhibit bacterial conjugation

    Get PDF
    Bacterial conjugation is a key mechanism by which bacteria acquire antibiotic resistance. Therefore, conjugation inhibitors (COINs) are promising compounds in the fight against the spread of antibiotic resistance genes among bacteria. Unsaturated fatty acids (uFAs) and alkynoic fatty acid derivatives, such as 2-hexadecanoic acid (2-HDA), have been reported previously as being effective COINs. The traffic ATPase TrwD, a VirB11 homolog in plasmid R388, is the molecular target of these compounds, which likely affect binding of TrwD to bacterial membranes. In this work, we demonstrate that COINs are abundantly incorporated into Escherichia coli membranes, replacing palmitic acid as the major component of the membrane. We also show that TrwD binds palmitic acid, thus facilitating its interaction with the membrane. Our findings also suggest that COINs bind TrwD at a site that is otherwise occupied by palmitic acid. Accordingly, molecular docking predictions with palmitic acid indicated that it shares the same binding site as uFAs and 2-HDA, although it differs in the contacts involved in this interaction. We also identified 2-bromopalmitic acid, a palmitate analog that inhibits many membrane-associated enzymes, as a compound that effectively reduces TrwD ATPase activity and bacterial conjugation. Moreover, we demonstrate that 2-bromopalmitic and palmitic acids both compete for the same binding site in TrwD. Altogether, these detailed findings open up a new avenue in the search for effective synthetic inhibitors of bacterial conjugation, which may be pivotal for combating multidrug-resistant bacteria.This work was supported by Spanish Ministerio de Economia y Competitividad (MINECO) Grants BFU2016-78521-R (to E. C. and I. A.) and BFU2014-55534 (to F. d. l. C.) and by Grant P20GM103475-16 from the National Center for Research Resources and NIGMS, National Institutes of Health (to D. S. R.). The authors declare that they have no conflicts of interest withthe contents of this article. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health

    Prospects in the orbital and rotational dynamics of the Moon with the advent of sub-centimeter lunar laser ranging

    Get PDF
    Lunar laser ranging (LLR) measurements are crucial for advanced exploration of the laws of fundamental gravitational physics and geophysics as well as for future human and robotic missions to the Moon. The corner-cube reflectors (CCR) currently on the Moon require no power and still work perfectly since their installation during the project Apollo era. Current LLR technology allows us to measure distances to the Moon with a precision approaching 1 mm. As NASA pursues the vision of taking humans back to the Moon, new, more precise laser ranging applications will be demanded, including continuous tracking from more sites on Earth, placing new CCR arrays on the Moon, and possibly installing other devices such as transponders, etc. for multiple scientific and technical purposes. Since this effort involves humans in space, then in all situations the accuracy, fidelity, and robustness of the measurements, their adequate interpretation, and any products based on them, are of utmost importance. Successful achievement of this goal strongly demands further significant improvement of the theoretical model of the orbital and rotational dynamics of the Earth-Moon system. This model should inevitably be based on the theory of general relativity, fully incorporate the relevant geophysical processes, lunar librations, tides, and should rely upon the most recent standards and recommendations of the IAU for data analysis. This paper discusses methods and problems in developing such a mathematical model. The model will take into account all the classical and relativistic effects in the orbital and rotational motion of the Moon and Earth at the sub-centimeter level. The model is supposed to be implemented as a part of the computer code underlying NASA Goddard's orbital analysis and geophysical parameter estimation package GEODYN and the ephemeris package PMOE 2003 of the Purple Mountain Observatory. The new model will allow us to navigate a spacecraft precisely to a location on the Moon. It will also greatly improve our understanding of the structure of the lunar interior and the nature of the physical interaction at the core-mantle interface layer. The new theory and upcoming millimeter LLR will give us the means to perform one of the most precise fundamental tests of general relativity in the solar system. © 2008 COSPAR
    corecore