64 research outputs found

    Interaction of Radiopharmaceuticals with Somatostatin Receptor 2 Revealed by Molecular Dynamics Simulations

    Get PDF
    The development of drugs targeting somatostatin receptor 2 (SSTR2), generally overexpressed in neuroendocrine tumors, is focus of intense research. A few molecules in conjugation with radionuclides are in clinical use for both diagnostic and therapeutic purposes. These radiopharmaceuticals are composed of a somatostatin analogue biovector conjugated to a chelator moiety bearing the radionuclide. To date, despite valuable efforts, a detailed molecular-level description of the interaction of radiopharmaceuticals in complex with SSTR2 has not yet been accomplished. Therefore, in this work, we carefully analyzed the key dynamical features and detailed molecular interactions of SSTR2 in complex with six radiopharmaceutical compounds selected among the few already in use (64Cu/68Ga-DOTATATE, 68Ga-DOTATOC, 64Cu-SARTATE) and some in clinical development (68Ga-DOTANOC, 64Cu-TETATATE). Through molecular dynamics simulations and exploiting recently available structures of SSTR2, we explored the influence of the different portions of the compounds (peptide, radionuclide, and chelator) in the interaction with the receptor. We identified the most stable binding modes and found distinct interaction patterns characterizing the six compounds. We thus unveiled detailed molecular interactions crucial for the recognition of this class of radiopharmaceuticals. The microscopically well-founded analysis presented in this study provides guidelines for the design of new potent ligands targeting SSTR2

    Recognition of quinolone antibiotics by the multidrug efflux transporter MexB of Pseudomonas aeruginosa

    Get PDF
    The drug/proton antiporter MexB is the engine of the major efflux pump MexAB-OprM in Pseudomonas aeruginosa. This protein is known to transport a large variety of compounds, including antibiotics, thus conferring a multi-drug resistance phenotype. Due to the difficulty of producing co-crystals, only two X-ray structures of MexB in a complex with ligands are available to date, and mechanistic aspects are largely hypothesized based on the body of data collected for the homologous protein AcrB of Escherichia coli. In particular, a recent study (Ornik-Cha, Wilhelm, Kobylka et al., Nat. Commun., 2021, 12, 6919) reported a co-crystal structure of AcrB in a complex with levofloxacin, an antibiotic belonging to the important class of (fluoro)-quinolones. In this work, we performed a systematic ensemble docking campaign coupled to the cluster analysis and molecular-mechanics optimization of docking poses to study the interaction between 36 quinolone antibiotics and MexB. We additionally investigated surface complementarity between each molecule and the transporter and thoroughly assessed the computational protocol adopted against the known experimental data. Our study reveals different binding preferences of the investigated compounds towards the sub-sites of the large deep binding pocket of MexB, supporting the hypothesis that MexB substrates oscillate between different binding modes with similar affinity. Interestingly, small changes in the molecular structure translate into significant differences in MexB-quinolone interactions. All the predicted binding modes are available for download and visualization at the following link: https://www.dsf.unica.it/dock/mexb/quinolones

    Molecular simulations of SSTR2 dynamics and interaction with ligands

    Get PDF
    The cyclic peptide hormone somatostatin regulates physiological processes involved in growth and metabolism, through its binding to G-protein coupled somatostatin receptors. The isoform 2 (SSTR2) is of particular relevance for the therapy of neuroendocrine tumours for which different analogues to somatostatin are currently in clinical use. We present an extensive and systematic computational study on the dynamics of SSTR2 in three different states: active agonist-bound, inactive antagonist-bound and apo inactive. We exploited the recent burst of SSTR2 experimental structures to perform μs-long multi-copy molecular dynamics simulations to sample conformational changes of the receptor and rationalize its binding to different ligands (the agonists somatostatin and octreotide, and the antagonist CYN154806). Our findings suggest that the apo form is more flexible compared to the holo ones, and confirm that the extracellular loop 2 closes upon the agonist octreotide but not upon the antagonist CYN154806. Based on interaction fingerprint analyses and free energy calculations, we found that all peptides similarly interact with residues buried into the binding pocket. Conversely, specific patterns of interactions are found with residues located in the external portion of the pocket, at the basis of the extracellular loops, particularly distinguishing the agonists from the antagonist. This study will help in the design of new somatostatin-based compounds for theranostics of neuroendocrine tumours

    A Comprehensive Mapping of the Druggable Cavities within the SARS-CoV-2 Therapeutically Relevant Proteins by Combining Pocket and Docking Searches as Implemented in Pockets 2.0

    Get PDF
    (1) Background: Virtual screening studies on the therapeutically relevant proteins of the severe acute respiratory syndrome Coronavirus 2 (SARS-CoV-2) require a detailed characterization of their druggable binding sites, and, more generally, a convenient pocket mapping represents a key step for structure-based in silico studies; (2) Methods: Along with a careful literature search on SARS-CoV-2 protein targets, the study presents a novel strategy for pocket mapping based on the combination of pocket (as performed by the well-known FPocket tool) and docking searches (as performed by PLANTS or AutoDock/Vina engines); such an approach is implemented by the Pockets 2.0 plug-in for the VEGA ZZ suite of programs; (3) Results: The literature analysis allowed the identification of 16 promising binding cavities within the SARS-CoV-2 proteins and the here proposed approach was able to recognize them showing performances clearly better than those reached by the sole pocket detection; and (4) Conclusions: Even though the presented strategy should require more extended validations, this proved successful in precisely characterizing a set of SARS-CoV-2 druggable binding pockets including both orthosteric and allosteric sites, which are clearly amenable for virtual screening campaigns and drug repurposing studies. All results generated by the study and the Pockets 2.0 plug-in are available for download

    PRENYLATED CURCUMIN ANALOGUES AS MULTIPOTENT TOOLS TO TACKLE ALZHEIMER'S DISEASE

    Get PDF
    Alzheimer's disease is likely to be caused by copathogenic factors including aggregation of A\u3b2 peptides into oligomers and fibrils, neuroinflammation and oxidative stress. To date, no effective treatments are available and because of the multifactorial nature of the disease, it emerges the need to act on different and simultaneous fronts. Despite the multiple biological activities ascribed to curcumin as neuroprotector, its poor bioavailability and toxicity limit the success in clinical outcomes. To tackle Alzheimer's disease on these aspects, the curcumin template was suitably modified and a small set of analogues was attained. In particular, derivative 1 turned out to be less toxic than curcumin. As evidenced by capillary electrophoresis and transmission electron microscopy studies, 1 proved to inhibit the formation of large toxic A\u3b2 oligomers, by shifting the equilibrium towards smaller non-toxic assemblies and to limit the formation of insoluble fibrils. These findings were supported by molecular docking and steered molecular dynamics simulations which confirmed the superior capacity of 1 to bind A\u3b2 structures of different complexity. Remarkably, 1 also showed in vitro anti-inflammatory and anti-oxidant properties. In summary, the curcumin-based analogue 1 emerged as multipotent compound worth to be further investigated and exploited in the Alzheimer's disease multi-target context

    A combination of infrared spectroscopy and morphological analysis allows successfully identifying rare crystals and atypical urinary stones

    Get PDF
    Background: The combination of infrared spectroscopy and morphological analysis significantly improves the urinary stone analysis.In addition to common urinary stones, it is not unusual to encounter spurious or factitious stones that, if not appropriately identified, can lead to errors in the diagnosis. In this study we shows the importance of Infrared spectroscopy and the morphological analysis, for determining the presence of drugs crystals or atypical components in the calculi.Methods: among 1.041 urinary stones analyzed by morphocostitutional analysis the rare stones were also analyzed by chemical spot test analysis.Results: Among 1.041 calculi analyzed, 1.018 had a known composition, 23 samples were stones with rare composition or fake urinary stones.Conclusions: FT-IR, allows to identify, theoretically, any substance, including drug-containing calculi or calculi with unusual composition and identify false stones. This is mandatory to treat patients affected by urolithiasis with a personalized clinical approach

    Relevamiento de Quesos Entrerrianos. Características Físico-Químicas-Bacteriológicas y Sensoriales con vistas a su tipificación

    Get PDF
    La caracterización y clasificación de los alimentos se encuentra definida y regida por la Ley Nacional 18 284, Código Alimentario Argentino, por lo que la definición de quesos, su calificación de inocuidad y clasificación, se encuentran dados en la mencionada normativa. Para el caso, de la producción de los tambos queserías entrerrianos, entendiendo como tal a los pequeños y medianos establecimientos tamberos que elaboran solo su propia producción; a la fecha, son escasos los estudios disponibles tendientes a conocer sus características, y si los mismos se encuadran a lo dispuesto por la norma. El problema que se intenta abordar, es conocer con datos obtenidos en un muestreo estadístico, las características físico-químicas, bacteriológicas y sensoriales de este tipo de quesos, conocidos popularmente como «tipo sardo». El relevamiento incluyó encuestas a productores y consumidores, análisis y evaluación de las muestras obtenidas para la calificación y clasificación de la producción de los tambos-queserías entrerrianos. Finalmente se propone realizar de un protocolo de elaboración que homogenice el tipo de queso, destacando sus características típicas, para darle mayor valor agregado

    A Distinct Pattern of Circulating Amino Acids Characterizes Older Persons with Physical Frailty and Sarcopenia: Results from the BIOSPHERE Study

    Get PDF
    Physical frailty and sarcopenia (PF&S) are hallmarks of aging that share a common pathogenic background. Perturbations in protein/amino acid metabolism may play a role in the development of PF&S. In this initial report, 68 community-dwellers aged 70 years and older, 38 with PF&S and 30 non-sarcopenic, non-frail controls (nonPF&S), were enrolled as part as the "BIOmarkers associated with Sarcopenia and Physical frailty in EldeRly pErsons" (BIOSPHERE) study. A panel of 37 serum amino acids and derivatives was assayed by UPLC-MS. Partial Least Squares\u207bDiscriminant Analysis (PLS-DA) was used to characterize the amino acid profile of PF&S. The optimal complexity of the PLS-DA model was found to be three latent variables. The proportion of correct classification was 76.6 \ub1 3.9% (75.1 \ub1 4.6% for enrollees with PF&S; 78.5 \ub1 6.0% for nonPF&S). Older adults with PF&S were characterized by higher levels of asparagine, aspartic acid, citrulline, ethanolamine, glutamic acid, sarcosine, and taurine. The profile of nonPF&S participants was defined by higher concentrations of \u3b1-aminobutyric acid and methionine. Distinct profiles of circulating amino acids and derivatives characterize older people with PF&S. The dissection of these patterns may provide novel insights into the role played by protein/amino acid perturbations in the disabling cascade and possible new targets for interventions
    corecore