19 research outputs found

    Chronic Plasma Exposure to Kinase Inhibitors in Patients with Oncogene-Addicted Non-Small Cell Lung Cancer

    No full text
    Kinase inhibitors (KI) have dramatically improved the outcome of treatment in patients with non-small cell lung cancer (NSCLC), which harbors an oncogene addiction. This study assesses KI plasma levels and their clinical relevance in patients chronically exposed to KIs. Plasma samples were collected in NSCLC patients receiving erlotinib, gefitinib, osimertinib, crizotinib, or dabrafenib (with or without trametinib) for at least three months between November 2013 and February 2019 in a single institution. KI drug concentrations were measured by ultra-performance liquid chromatography coupled with tandem mass spectrometry and compared to published data defining optimal plasma concentration. The main outcome was the rate of samples with suboptimal KI plasma concentrations. Secondary outcomes included its impact on T790M mutation emergence in patients receiving a first-generation epidermal growth factor receptor (EGFR) KI. Fifty-one samples were available from 41 patients with advanced NSCLC harboring driver genetic alterations, including EGFR, v-Raf murine sarcoma viral oncogene homolog B (BRAF), anaplastic lymphoma kinase (ALK) or ROS proto-oncogene 1 (ROS1), and who had an available evaluation of chronic KI plasma exposure. Suboptimal plasma concentrations were observed in 51% (26/51) of cases. In EGFR-mutant cases failing first-generation KIs, EGFR exon 20 p.T790M mutation emergence was detected in 31% (4/13) of samples in optimal vs. none in suboptimal concentration (0/5). Suboptimal plasma concentrations of KIs are frequent in advanced NSCLC patients treated with a KI for at least three months and might contribute to treatment failure

    Potential Cytochrome P450-mediated pharmacokinetic interactions between herbs, food, and dietary supplements and cancer treatments

    No full text
    International audienceHerbs, food and dietary supplements (HFDS), can interact significantly with anticancer drug treatments via cytochrome p450 isoforms (CYP) CYP3A4, CYP2D6, CYP1A2, and CYP2C8. The objective of this review was to assess the influence of HFDS compounds on these cytochromes. Interactions with CYP activities were searched for 189 herbs and food products, 72 dietary supplements in Web of Knowledge® databases. Analyses were made from 140 of 3,125 clinical trials and 236 of 3,374 in vitro, animal model studies or case reports. 18 trials were found to report direct interactions between 9 HFDS with 8 anticancer drugs. 21 HFDS were found to interact with CYP3A4, a major metabolic pathway for many anticancer drugs. All 261 HFDS were classified for their interaction with the main cytochromes P450 involved in the metabolism of anticancer drugs. We provided an easy-to-use colour-coded table to easily match potential interactions between 261 HFDS and 117 anticancer drugs

    Circulating acetylated polyamines correlate with Covid-19 severity in cancer patients

    No full text
    International audienceCancer patients are particularly susceptible to the development of severe Covid-19, prompting us to investigate the serum metabolome of 204 cancer patients enrolled in the ONCOVID trial. We previously described that the immunosuppressive tryptophan/kynurenine metabolite anthranilic acid correlates with poor prognosis in non-cancer patients. In cancer patients, we observed an elevation of anthranilic acid at baseline (without Covid-19 diagnosis) and no further increase with mild or severe Covid-19. We found that, in cancer patients, Covid-19 severity was associated with the depletion of two bacterial metabolites, indole-3-proprionate and 3-phenylproprionate, that both positively correlated with the levels of several inflammatory cytokines. Most importantly, we observed that the levels of acetylated polyamines (in particular N1-acetylspermidine, N1,N8-diacetylspermidine and N1,N12-diacetylspermine), alone or in aggregate, were elevated in severe Covid-19 cancer patients requiring hospitalization as compared to uninfected cancer patients or cancer patients with mild Covid-19. N1-acetylspermidine and N1,N8-diacetylspermidine were also increased in patients exhibiting prolonged viral shedding (>40 days). An abundant literature indicates that such acetylated polyamines increase in the serum from patients with cancer, cardiovascular disease or neurodegeneration, associated with poor prognosis. Our present work supports the contention that acetylated polyamines are associated with severe Covid-19, both in the general population and in patients with malignant disease. Severe Covid-19 is characterized by a specific metabolomic signature suggestive of the overactivation of spermine/spermidine N1-acetyl transferase-1 (SAT1), which catalyzes the first step of polyamine catabolism

    Prolonged SARS-CoV-2 RNA virus shedding and lymphopenia are hallmarks of COVID-19 in cancer patients with poor prognosis

    No full text
    International audiencePatients with cancer are at higher risk of severe coronavirus infectious disease 2019 (COVID-19), but the mechanisms underlying virus–host interactions during cancer therapies remain elusive. When comparing nasopharyngeal swabs from cancer and noncancer patients for RT-qPCR cycle thresholds measuring acute respiratory syndrome coronavirus-2 (SARS-CoV-2) in 1063 patients (58% with cancer), we found that malignant disease favors the magnitude and duration of viral RNA shedding concomitant with prolonged serum elevations of type 1 IFN that anticorrelated with anti-RBD IgG antibodies. Cancer patients with a prolonged SARS-CoV-2 RNA detection exhibited the typical immunopathology of severe COVID-19 at the early phase of infection including circulation of immature neutrophils, depletion of nonconventional monocytes, and a general lymphopenia that, however, was accompanied by a rise in plasmablasts, activated follicular T-helper cells, and non-naive Granzyme B + FasL + , Eomes high TCF-1 high , PD-1 + CD8 + Tc1 cells. Virus-induced lymphopenia worsened cancer-associated lymphocyte loss, and low lymphocyte counts correlated with chronic SARS-CoV-2 RNA shedding, COVID-19 severity, and a higher risk of cancer-related death in the first and second surge of the pandemic. Lymphocyte loss correlated with significant changes in metabolites from the polyamine and biliary salt pathways as well as increased blood DNA from Enterobacteriaceae and Micrococcaceae gut family members in long-term viral carriers. We surmise that cancer therapies may exacerbate the paradoxical association between lymphopenia and COVID-19-related immunopathology, and that the prevention of COVID-19-induced lymphocyte loss may reduce cancer-associated death

    The Polarity and Specificity of Antiviral T Lymphocyte Responses Determine Susceptibility to SARS-CoV-2 Infection in Patients with Cancer and Healthy Individuals

    No full text
    International audienceAbstract Vaccination against coronavirus disease 2019 (COVID-19) relies on the in-depth understanding of protective immune responses to severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). We characterized the polarity and specificity of memory T cells directed against SARS-CoV-2 viral lysates and peptides to determine correlates with spontaneous, virus-elicited, or vaccine-induced protection against COVID-19 in disease-free and cancer-bearing individuals. A disbalance between type 1 and 2 cytokine release was associated with high susceptibility to COVID-19. Individuals susceptible to infection exhibited a specific deficit in the T helper 1/T cytotoxic 1 (Th1/Tc1) peptide repertoire affecting the receptor binding domain of the spike protein (S1-RBD), a hotspot of viral mutations. Current vaccines triggered Th1/Tc1 responses in only a fraction of all subject categories, more effectively against the original sequence of S1-RBD than that from viral variants. We speculate that the next generation of vaccines should elicit Th1/Tc1 T-cell responses against the S1-RBD domain of emerging viral variants. Significance: This study prospectively analyzed virus-specific T-cell correlates of protection against COVID-19 in healthy and cancer-bearing individuals. A disbalance between Th1/Th2 recall responses conferred susceptibility to COVID-19 in both populations, coinciding with selective defects in Th1 recognition of the receptor binding domain of spike. See related commentary by McGary and Vardhana, p. 892. This article is highlighted in the In This Issue feature, p. 87
    corecore