41 research outputs found

    Rapid-prototyping of microscopic thermal landscapes in micro-focused Brillouin light scattering spectroscopy

    Full text link
    Since temperature and its spatial and temporal variations affect a wide range of physical properties of material systems, they can be used to create reconfigurable spatial structures of various types in physical and biological objects. This paper presents an experimental optical setup for creating tunable two-dimensional temperature patterns on a micrometer scale. As an example of its practical application, we have produced temperature-induced magnetization landscapes in ferrimagnetic yttrium iron garnet films and investigated them using micro-focused Brillouin light scattering spectroscopy. It is shown that, due to the temperature dependence of the magnon spectrum, temperature changes can be visualized even for microscale thermal patterns.Comment: 5 pages, 4 figure

    Confinement of Bose-Einstein magnon condensates in adjustable complex magnetization landscapes

    Full text link
    Coherent wave states such as Bose-Einstein condensates (BECs), which spontaneously form in an overpopulated magnon gas even at room temperature, have considerable potential for wave-based computing and information processing at microwave frequencies. The ability to control the transport properties of magnon BECs plays an essential role for their practical use. Here, we demonstrate spatio-temporal control of the BEC density distribution through the excitation of magnon supercurrents in an inhomogeneously magnetized yttrium iron garnet film. The BEC is created by microwave parametric pumping and probed by Brillouin light scattering spectroscopy. The desired magnetization profile is prepared by heating the film with optical patterns projected onto its surface using a phase-based wavefront modulation technique. Specifically, we observe a pronounced spatially localized magnon accumulation caused by magnon supercurrents flowing toward each other originating in two heated regions. This accumulation effect increases the BEC lifetime due to the constant influx of condensed magnons into the confinement region. The shown approach to manipulate coherent waves provides an opportunity to extend the lifetime of freely evolving magnon BECs, create dynamic magnon textures, and study the interaction of magnon condensates formed in different regions of the sample.Comment: 8 pages, 4 figure

    Identification of Novel Genetic Loci Associated with Thyroid Peroxidase Antibodies and Clinical Thyroid Disease

    Get PDF
    Peer reviewe
    corecore