75 research outputs found

    Species Richness and Nesting Success of Migrant Forest Birds in Natural River Corridors and Anthropogenic Woodlands in Southeastern South Dakota

    Get PDF
    Forest fragmentation is thought to be partially responsible for declines in many Neotropical migrant birds due to the combined effects of higher rates of brood parasitism and increased predation near forest edges. A majority of the forested habitat in the northern prairie region is found in riparian corridors, but this native habitat has been much reduced from its historical extent. However, additional woodland nesting habitat has been established within the last century in the form of isolated woodlots on farms. We compared abundance, species richness, and nesting success of migrant forest birds breeding in native riparian corridors and anthropogenic woodlots. The two habitats had similar bird abundances but native riparian woodlands were more species-rich than woodlots. We located a total of 650 nests, with 320 nests of 15 species in woodlots and 331 nests of 25 species in riparian corridors. Nesting success was not significantly different between the two habitats for all species combined or for individual species with ≥15 nests in each habitat. Nests above 5 m were more successful than lower nests, but distance to woodland edge did not influence nesting success. Nests initiated in the middle and late portions of the nesting season were more successful than early season nests, significantly so in woodlots. Thus, anthropogenic woodlots were as suitable as natural habitats for successful nesting. However, many of the Neotropical migrants occurring in riparian habitats were absent from woodlots, which suggests that riparian corridors are especially important habitats for breeding birds in the northern prairie region

    Aboveground Biomass Accumulation in a Tropical Wet Forest in Nicaragua Following a Catastrophic Hurricane Disturbance 1

    Full text link
    Among their effects on forest structure and carbon dynamics, hurricanes frequently create large-scale canopy gaps that promote secondary growth. To measure the accumulation of aboveground biomass (AGBM) in a hurricane damaged forest, we established permanent plots 4 mo after the landfall of Hurricane Joan on the Atlantic coast of Nicaragua in October 1988. We quantified AGBM accumulation in these plots by correlating diameter measurements to AGBM values using a published allometric regression equation for tropical wet forests. In the first measurement year following the storm, AGBM in hurricane-affected plots was quite variable, ranging from 26 to 153 Mg/ha, with a mean of 78 (±15) Mg/ha. AGBM was substantially lower than in two control plots several kilometers outside the hurricane's path (331 ±15 Mg/ha). Biomass accumulation was slow (5.36 ± 0.74 Mg/ha/yr), relative to previous studies of forest regeneration following another hurricane (Hugo) and agricultural activity. We suggest that large-scale, homogenous canopy damage caused by Hurricane Joan impeded the dispersal and establishment of pioneer trees and led to a secondary forest dominated by late successional species that resprouted and survived the disturbance. With the relatively slow rate of biomass accumulation, any tightening in disturbance interval could reduce the maximum capacity of the living biomass to store carbon.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/73646/1/j.1744-7429.2005.00077.x.pd

    Shared genetics underlying epidemiological association between endometriosis and ovarian cancer

    Get PDF
    Epidemiological studies have demonstrated associations between endometriosis and certain histotypes of ovarian cancer, including clear cell, low-grade serous and endometrioid carcinomas. We aimed to determine whether the observed associations might be due to shared genetic aetiology. To address this, we used two endometriosis datasets genotyped on common arrays with full-genome coverage (3194 cases and 7060 controls) and a large ovarian cancer dataset genotyped on the customized Illumina Infinium iSelect (iCOGS) arrays (10 065 cases and 21 663 controls). Previous work has suggested that a large number of genetic variants contribute to endometriosis and ovarian cancer (all histotypes combined) susceptibility. Here, using the iCOGS data, we confirmed polygenic architecture for most histotypes of ovarian cancer. This led us to evaluate if the polygenic effects are shared across diseases. We found evidence for shared genetic risks between endometriosis and all histotypes of ovarian cancer, except for the intestinal mucinous type. Clear cell carcinoma showed the strongest genetic correlation with endometriosis (0.51, 95% CI = 0.18-0.84). Endometrioid and low-grade serous carcinomas had similar correlation coefficients (0.48, 95% CI = 0.07-0.89 and 0.40, 95% CI = 0.05-0.75, respectively). High-grade serous carcinoma, which often arises from the fallopian tubes, showed a weaker genetic correlation with endometriosis (0.25, 95% CI = 0.11-0.39), despite the absence of a known epidemiological association. These results suggest that the epidemiological association between endometriosis and ovarian adenocarcinoma may be attributable to shared genetic susceptibility loci.Other Research Uni

    Causal Associations of Adiposity and Body Fat Distribution With Coronary Heart Disease, Stroke Subtypes, and Type 2 Diabetes MellitusClinical Perspective

    Get PDF
    Background—Implications of different adiposity measures on cardiovascular disease aetiology remain unclear. In this paper we quantify and contrast causal associations of central adiposity (waist:hip ratio adjusted for BMI (WHRadjBMI)) and general adiposity (body mass index (BMI)) with cardiometabolic disease. Methods—97 independent single nucleotide polymorphisms (SNPs) for BMI and 49 SNPs for WHRadjBMI were used to conduct Mendelian randomization analyses in 14 prospective studies supplemented with CHD data from CARDIoGRAMplusC4D (combined total 66,842 cases), stroke from METASTROKE (12,389 ischaemic stroke cases), type 2 diabetes (T2D) from DIAGRAM (34,840 cases), and lipids from GLGC (213,500 participants) consortia. Primary outcomes were CHD, T2D, and major stroke subtypes; secondary analyses included 18 cardiometabolic traits. Results—Each one standard deviation (SD) higher WHRadjBMI (1SD~0.08 units) associated with a 48% excess risk of CHD (odds ratio [OR] for CHD: 1.48; 95%CI: 1.28-1.71), similar to findings for BMI (1SD~4.6kg/m2; OR for CHD: 1.36; 95%CI: 1.22-1.52). Only WHRadjBMI increased risk of ischaemic stroke (OR 1.32; 95%CI 1.03-1.70). For T2D, both measures had large effects: OR 1.82 (95%CI 1.38-2.42) and OR 1.98 (95%CI 1.41-2.78) per 1SD higher WHRadjBMI and BMI respectively. Both WHRadjBMI and BMI were associated with higher left ventricular hypertrophy, glycaemic traits, interleukin-6, and circulating lipids. WHRadjBMI was also associated with higher carotid intima-media thickness (39%; 95%CI: 9%-77% per 1SD). Conclusions—Both general and central adiposity have causal effects on CHD and T2D. Central adiposity may have a stronger effect on stroke risk. Future estimates of the burden of adiposity on health should include measures of central and general adiposity

    Star clusters near and far; tracing star formation across cosmic time

    Get PDF
    © 2020 Springer-Verlag. The final publication is available at Springer via https://doi.org/10.1007/s11214-020-00690-x.Star clusters are fundamental units of stellar feedback and unique tracers of their host galactic properties. In this review, we will first focus on their constituents, i.e.\ detailed insight into their stellar populations and their surrounding ionised, warm, neutral, and molecular gas. We, then, move beyond the Local Group to review star cluster populations at various evolutionary stages, and in diverse galactic environmental conditions accessible in the local Universe. At high redshift, where conditions for cluster formation and evolution are more extreme, we are only able to observe the integrated light of a handful of objects that we believe will become globular clusters. We therefore discuss how numerical and analytical methods, informed by the observed properties of cluster populations in the local Universe, are used to develop sophisticated simulations potentially capable of disentangling the genetic map of galaxy formation and assembly that is carried by globular cluster populations.Peer reviewedFinal Accepted Versio

    A likelihood ratio approach for utilizing case-control data in the clinical classification of rare sequence variants:Application to BRCA1 and BRCA2

    Get PDF
    A large number of variants identified through clinical genetic testing in disease susceptibility genes are of uncertain significance (VUS). Following the recommendations of the American College of Medical Genetics and Genomics (ACMG) and Association for Molecular Pathology (AMP), the frequency in case-control datasets (PS4 criterion) can inform their interpretation. We present a novel case-control likelihood ratio-based method that incorporates gene-specific age-related penetrance. We demonstrate the utility of this method in the analysis of simulated and real datasets. In the analysis of simulated data, the likelihood ratio method was more powerful compared to other methods. Likelihood ratios were calculated for a case-control dataset of BRCA1 and BRCA2 variants from the Breast Cancer Association Consortium (BCAC) and compared with logistic regression results. A larger number of variants reached evidence in favor of pathogenicity, and a substantial number of variants had evidence against pathogenicity findings that would not have been reached using other case-control analysis methods. Our novel method provides greater power to classify rare variants compared with classical case-control methods. As an initiative from the ENIGMA Analytical Working Group, we provide user-friendly scripts and preformatted Excel calculators for implementation of the method for rare variants in BRCA1, BRCA2, and other high-risk genes with known penetrance.</p

    Aggregation tests identify new gene associations with breast cancer in populations with diverse ancestry

    Get PDF
    Low-frequency variants play an important role in breast cancer (BC) susceptibility. Gene-based methods can increase power by combining multiple variants in the same gene and help identify target genes. We evaluated the potential of gene-based aggregation in the Breast Cancer Association Consortium cohorts including 83,471 cases and 59,199 controls. Low-frequency variants were aggregated for individual genes' coding and regulatory regions. Association results in European ancestry samples were compared to single-marker association results in the same cohort. Gene-based associations were also combined in meta-analysis across individuals with European, Asian, African, and Latin American and Hispanic ancestry. In European ancestry samples, 14 genes were significantly associated (q < 0.05) with BC. Of those, two genes, FMNL3 (P = 6.11 × 10 ) and AC058822.1 (P = 1.47 × 10 ), represent new associations. High FMNL3 expression has previously been linked to poor prognosis in several other cancers. Meta-analysis of samples with diverse ancestry discovered further associations including established candidate genes ESR1 and CBLB. Furthermore, literature review and database query found further support for a biologically plausible link with cancer for genes CBLB, FMNL3, FGFR2, LSP1, MAP3K1, and SRGAP2C. Using extended gene-based aggregation tests including coding and regulatory variation, we report identification of plausible target genes for previously identified single-marker associations with BC as well as the discovery of novel genes implicated in BC development. Including multi ancestral cohorts in this study enabled the identification of otherwise missed disease associations as ESR1 (P = 1.31 × 10 ), demonstrating the importance of diversifying study cohorts. [Abstract copyright: © 2023. The Author(s).

    Functional mechanisms underlying pleiotropic risk alleles at the 19p13.1 breast-ovarian cancer susceptibility locus

    Get PDF
    A locus at 19p13 is associated with breast cancer (BC) and ovarian cancer (OC) risk. Here we analyse 438 SNPs in this region in 46,451 BC and 15,438 OC cases, 15,252 BRCA1 mutation carriers and 73,444 controls and identify 13 candidate causal SNPs associated with serous OC (P=9.2 × 10-20), ER-negative BC (P=1.1 × 10-13), BRCA1-associated BC (P=7.7 × 10-16) and triple negative BC (P-diff=2 × 10-5). Genotype-gene expression associations are identified for candidate target genes ANKLE1 (P=2 × 10-3) and ABHD8 (P<2 × 10-3). Chromosome conformation capture identifies interactions between four candidate SNPs and ABHD8, and luciferase assays indicate six risk alleles increased transactivation of the ADHD8 promoter. Targeted deletion of a region containing risk SNP rs56069439 in a putative enhancer induces ANKLE1 downregulation; and mRNA stability assays indicate functional effects for an ANKLE1 3′-UTR SNP. Altogether, these data suggest that multiple SNPs at 19p13 regulate ABHD8 and perhaps ANKLE1 expression, and indicate common mechanisms underlying breast and ovarian cancer risk
    corecore