110 research outputs found

    Evaluating Geographically Weighted Regression Models for Environmental Chemical Risk Analysis

    Get PDF
    In the evaluation of cancer risk related to environmental chemical exposures, the effect of many correlated chemicals on disease is often of interest. The relationship between correlated environmental chemicals and health effects is not always constant across a study area, as exposure levels may change spatially due to various environmental factors. Geographically weighted regression (GWR) has been proposed to model spatially varying effects. However, concerns about collinearity effects, including regression coefficient sign reversal (ie, reversal paradox), may limit the applicability of GWR for environmental chemical risk analysis. A penalized version of GWR, the geographically weighted lasso, has been proposed to remediate the collinearity effects in GWR models. Our focus in this study was on assessing through a simulation study the ability of GWR and GWL to correctly identify spatially varying chemical effects for a mixture of correlated chemicals within a study area. Our results showed that GWR suffered from the reversal paradox, while GWL overpenalized the effects for the chemical most strongly related to the outcome

    Assessment of Weighted Quantile Sum Regression for Modeling Chemical Mixtures and Cancer Risk

    Get PDF
    In evaluation of cancer risk related to environmental chemical exposures, the effect of many chemicals on disease is ultimately of interest. However, because of potentially strong correlations among chemicals that occur together, traditional regression methods suffer from collinearity effects, including regression coefficient sign reversal and variance inflation. In addition, penalized regression methods designed to remediate collinearity may have limitations in selecting the truly bad actors among many correlated components. The recently proposed method of weighted quantile sum (WQS) regression attempts to overcome these problems by estimating a body burden index, which identifies important chemicals in a mixture of correlated environmental chemicals. Our focus was on assessing through simulation studies the accuracy of WQS regression in detecting subsets of chemicals associated with health outcomes (binary and continuous) in site-specific analyses and in non-site-specific analyses. We also evaluated the performance of the penalized regres-sion methods of lasso, adaptive lasso, and elastic net in correctly classifying chemicals as bad actors or unrelated to the outcome. We based the simulation study on data from the National Cancer Institute Surveillance Epidemiology and End Results Program (NCI-SEER) case–control study of non-Hodgkin lymphoma (NHL) to achieve realistic exposure situations. Our results showed that WQS regression had good sensitivity and specificity across a variety of conditions considered in this study. The shrinkage methods had a tendency to incorrectly identify a large number of components, especially in the case of strong association with the outcome

    Associations between Prenatal Exposure to Black Carbon and Memory Domains in Urban Children: Modification by Sex and Prenatal Stress

    Get PDF
    Background Whether fetal neurodevelopment is disrupted by traffic-related air pollution is uncertain. Animal studies suggest that chemical and non-chemical stressors interact to impact neurodevelopment, and that this association is further modified by sex. Objectives To examine associations between prenatal traffic-related black carbon exposure, prenatal stress, and sex with children’s memory and learning. Methods Analyses included N = 258 mother-child dyads enrolled in a Boston, Massachusetts pregnancy cohort. Black carbon exposure was estimated using a validated spatiotemporal land-use regression model. Prenatal stress was measured using the Crisis in Family Systems-Revised survey of negative life events. The Wide Range Assessment of Memory and Learning (WRAML2) was administered at age 6 years; outcomes included the General Memory Index and its component indices [Verbal, Visual, and Attention Concentration]. Relationships between black carbon and WRAML2 index scores were examined using multivariable-adjusted linear regression including effect modification by stress and sex. Results Mothers were primarily minorities (60% Hispanic, 26% Black); 67% had ≤12 years of education. The main effect for black carbon was not significant for any WRAML2 index; however, in stratified analyses, among boys with high exposure to prenatal stress, Attention Concentration Index scores were on average 9.5 points lower for those with high compared to low prenatal black carbon exposure (P3-way interaction = 0.04). Conclusion The associations between prenatal exposure to black carbon and stress with children’s memory scores were stronger in boys than in girls. Studies assessing complex interactions may more fully characterize health risks and, in particular, identify vulnerable subgroups

    Protocols for the assurance of microarray data quality and process control

    Get PDF
    Microarrays represent a powerful technology that provides the ability to simultaneously measure the expression of thousands of genes. However, it is a multi-step process with numerous potential sources of variation that can compromise data analysis and interpretation if left uncontrolled, necessitating the development of quality control protocols to ensure assay consistency and high-quality data. In response to emerging standards, such as the minimum information about a microarray experiment standard, tools are required to ascertain the quality and reproducibility of results within and across studies. To this end, an intralaboratory quality control protocol for two color, spotted microarrays was developed using cDNA microarrays from in vivo and in vitro dose-response and time-course studies. The protocol combines: (i) diagnostic plots monitoring the degree of feature saturation, global feature and background intensities, and feature misalignments with (ii) plots monitoring the intensity distributions within arrays with (iii) a support vector machine (SVM) model. The protocol is applicable to any laboratory with sufficient datasets to establish historical high- and low-quality data

    The Optical Afterglow Light Curve of GRB 980519

    Get PDF
    We present V -, R-, and I-band observations made at the US Naval Observatory, Flagstaff Station, of the afterglow of GRB 980519 on UT 1998 May 20 and 22. These observations are combined with extensive data from the literature, and all are placed on a uniform magnitude system. The resultant R- and I-band light curves are fit by simple power laws with no breaks and indices of αR = 2.30 ± 0.12 and αI = 2.05 ± 0.07. This makes the afterglow of GRB 980519 one of the two steepest afterglows yet observed. The combined B-, V -, R-, and I-band observations are used to estimate the spectral power-law index, β = 1.4 ± 0.3, after correction for reddening. Unfortunately, GRB 980519 occurred at a relatively low Galactic latitude (b ≈ +15) where the Galactic reddening is poorly known and, hence, the actual value of β is poorly constrained. The observed α and range of likely β-values are, however, found to be consistent with simple relativistic blast-wave models. This afterglow and that of GRB 980326 displayed much steeper declines than the other seven well-observed afterglows, which cluster near α ≈ 1.2. GRB 980519 and GRB 980326 did not display burst characteristics in common that might distinguish them from the gamma-ray bursts with more typical light curves

    Integrated measures of lead and manganese exposure improve estimation of their joint effects on cognition in Italian school-age children

    Get PDF
    Every day humans are exposed to mixtures of chemicals, such as lead (Pb) and manganese (Mn). An underappreciated aspect of studying the health effects of mixtures is the role that the exposure biomarker media (blood, hair, etc.) may play in estimating the effects of the mixture. Different biomarker media represent different aspects of each chemical's toxicokinetics, thus no single medium can fully capture the toxicokinetic profile for all the chemicals in a mixture. A potential solution to this problem is to combine exposure data across different media to derive integrated estimates of each chemical's internal concentration. This concept, formalized as a multi-media biomarker (MMB) has proven effective for estimating the health impacts of Pb exposure, but may also be useful to estimate mixture effects, such as the joint effects of metals like Pb and Mn, while factoring in how the association changes based upon the biomarker media. Levels of Pb and Mn were quantified in five media: blood, hair, nails, urine, and saliva in the Public Health Impact of Metals Exposure (PHIME) project, a study of Italian adolescents aged 10–14 years. MMBs were derived for both metals using weighted quantile sum (WQS) regression across the five media. Age-adjusted Wechsler Intelligence Scale for Children (WISC) IQ scores, measured at the same time as the exposure measures, were the primary outcome and models were adjusted for sex and socioeconomic status. The levels Pb and Mn were relatively low, with median blood Pb of 1.27 (IQR: 0.84) μg/dL and median blood Mn of 1.09 (IQR: 0.45) μg/dL. Quartile increases in a Pb-Mn combination predicted decreased Full Scale IQ of 1.9 points (95% CI: 0.3, 3.5) when Pb and Mn exposure levels were estimated using MMBs, while individual regressions for each metal were not associated with Full Scale IQ. Additionally, a quartile increase in the WQS index of Pb and Mn, measured using MMBs, were associated with reductions in Verbal IQ by 2.8 points (1.0, 4.5). Weights that determine the contributions of the metals to the joint effect highlighted that the contribution of the Pb-Mn was 72–28% for Full Scale IQ and 42–58% for Verbal IQ. We found that the joint effects of Pb and Mn are strongly affected by the medium used to measure exposure and that the joint effects of the Pb and Mn MMBs on cognition were the stronger than any individual biomarker. Thus, increase power and accuracy for measuring mixture effects compared to individual biomarkers. As the number of chemicals in mixtures increases, appropriate biomarker selection will become increasingly important and MMBs are a natural way to reduce bias in such analyses

    Anti-androgens act jointly in suppressing spiggin concentrations in androgen-primed female three-spined sticklebacks - Prediction of combined effects by concentration addition

    Get PDF
    This is the post-print version of the final paper published in Aquatic Toxicology. The published article is available from the link below. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. Copyright @ 2013 Elsevier B.V.Increasing attention is being directed at the role played by anti-androgenic chemicals in endocrine disruption of wildlife within the aquatic environment. The co-occurrence of multiple contaminants with anti-androgenic activity highlights a need for the predictive assessment of combined effects, but information about anti-androgen mixture effects on wildlife is lacking. This study evaluated the suitability of the androgenised female stickleback screen (AFSS), in which inhibition of androgen-induced spiggin production provides a quantitative assessment of anti-androgenic activity, for predicting the effect of a four component mixture of anti-androgens. The anti-androgenic activity of four known anti-androgens (vinclozolin, fenitrothion, flutamide, linuron) was evaluated from individual concentration-response data and used to design a mixture containing each chemical at equipotent concentrations. Across a 100-fold concentration range, a concentration addition approach was used to predict the response of fish to the mixture. Two studies were conducted independently at each of two laboratories. By using a novel method to adjust for differences between nominal and measured concentrations, good agreement was obtained between the actual outcome of the mixture exposure and the predicted outcome. This demonstrated for the first time that androgen receptor antagonists act in concert in an additive fashion in fish and that existing mixture methodology is effective in predicting the outcome, based on concentration-response data for individual chemicals. The sensitivity range of the AFSS assay lies within the range of anti-androgenicity reported in rivers across many locations internationally. The approach taken in our study lays the foundations for understanding how androgen receptor antagonists work together in fish and is essential in informing risk assessment methods for complex anti-androgenic mixtures in the aquatic environment.European Commission and Natural Environment Research Council

    An overview of methods to address distinct research questions on environmental mixtures: an application to persistent organic pollutants and leukocyte telomere length

    Get PDF
    Background Numerous methods exist to analyze complex environmental mixtures in health studies. As an illustration of the different uses of mixture methods, we employed methods geared toward distinct research questions concerning persistent organic chemicals (POPs) as a mixture and leukocyte telomere length (LTL) as an outcome. Methods With information on 18 POPs and LTL among 1,003 U.S. adults (NHANES, 2001-2002), we used unsupervised methods including clustering to identify profiles of similarly exposed participants, and Principal Component Analysis (PCA) and Exploratory Factor Analysis (EFA) to identify common exposure patterns. We also employed supervised learning techniques, including penalized, weighted quantile sum (WQS), and Bayesian kernel machine (BKMR) regressions, to identify potentially toxic agents, and characterize nonlinear associations, interactions, and the overall mixture effect. Results Clustering separated participants into high, medium, and low POP exposure groups; longer log-LTL was found among those with high exposure. The first PCA component represented overall POP exposure and was positively associated with log-LTL. Two EFA factors, one representing furans and the other PCBs 126 and 118, were positively associated with log-LTL. Penalized regression methods selected three congeners in common (PCB 126, PCB 118, and furan 2,3,4,7,8-pncdf) as potentially toxic agents. WQS found a positive overall effect of the POP mixture and identified six POPs as potentially toxic agents (furans 1,2,3,4,6,7,8-hxcdf, 2,3,4,7,8-pncdf, and 1,2,3,6,7,8-hxcdf, and PCBs 99, 126, 169). BKMR found a positive linear association with furan 2,3,4,7,8-pncdf, suggestive evidence of linear associations with PCBs 126 and 169, and a positive overall effect of the mixture, but no interactions among congeners. Conclusions Using different methods, we identified patterns of POP exposure, potentially toxic agents, the absence of interaction, and estimated the overall mixture effect. These applications and results may serve as a guide for mixture method selection based on specific research questions
    • …
    corecore