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A B S T R A C T   

Every day humans are exposed to mixtures of chemicals, such as lead (Pb) and manganese (Mn). An underap-
preciated aspect of studying the health effects of mixtures is the role that the exposure biomarker media (blood, 
hair, etc.) may play in estimating the effects of the mixture. Different biomarker media represent different aspects 
of each chemical’s toxicokinetics, thus no single medium can fully capture the toxicokinetic profile for all the 
chemicals in a mixture. A potential solution to this problem is to combine exposure data across different media to 
derive integrated estimates of each chemical’s internal concentration. This concept, formalized as a multi-media 
biomarker (MMB) has proven effective for estimating the health impacts of Pb exposure, but may also be useful 
to estimate mixture effects, such as the joint effects of metals like Pb and Mn, while factoring in how the as-
sociation changes based upon the biomarker media. Levels of Pb and Mn were quantified in five media: blood, 
hair, nails, urine, and saliva in the Public Health Impact of Metals Exposure (PHIME) project, a study of Italian 
adolescents aged 10–14 years. MMBs were derived for both metals using weighted quantile sum (WQS) 
regression across the five media. Age-adjusted Wechsler Intelligence Scale for Children (WISC) IQ scores, 
measured at the same time as the exposure measures, were the primary outcome and models were adjusted for 
sex and socioeconomic status. The levels Pb and Mn were relatively low, with median blood Pb of 1.27 (IQR: 
0.84) μg/dL and median blood Mn of 1.09 (IQR: 0.45) μg/dL. Quartile increases in a Pb-Mn combination pre-
dicted decreased Full Scale IQ of 1.9 points (95% CI: 0.3, 3.5) when Pb and Mn exposure levels were estimated 
using MMBs, while individual regressions for each metal were not associated with Full Scale IQ. Additionally, a 
quartile increase in the WQS index of Pb and Mn, measured using MMBs, were associated with reductions in 
Verbal IQ by 2.8 points (1.0, 4.5). Weights that determine the contributions of the metals to the joint effect 
highlighted that the contribution of the Pb-Mn was 72–28% for Full Scale IQ and 42–58% for Verbal IQ. We 
found that the joint effects of Pb and Mn are strongly affected by the medium used to measure exposure and that 
the joint effects of the Pb and Mn MMBs on cognition were the stronger than any individual biomarker. Thus, 
increase power and accuracy for measuring mixture effects compared to individual biomarkers. As the number of 
chemicals in mixtures increases, appropriate biomarker selection will become increasingly important and MMBs 
are a natural way to reduce bias in such analyses.   

1. Introduction 

Understanding the impact of environmental exposures on children’s 

health is critical when designing interventions to prevent detrimental 
health effects and requires embracing the complexity of exposure 
assessment. Traditionally, investigations into environmental exposures 
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that impact cognitive development have focused on single chemical 
exposures measured in a single biological matrix (Pohl et al., 1997; 
Stafoggia et al., 2017). However, this modeling strategy ignores the fact 
that mixtures of exposures are the default exposure scenario in daily life. 
Furthermore, individual exposure biomarkers provide incomplete data 
on exposure and methods to integrate information across different bio-
markers can lead to better estimates of the health impact of chemicals 
(Levin-Schwartz, 2020). Therefore, we need to develop the methods that 
can maximize our understanding of both mixtures and exposure bio-
markers if we are to understand how environment impacts health. 

Metals are a ubiquitous class of chemicals which commonly co-occur 
(Fairbrother et al., 2007, 2007; Sexton, 2006), leading to interactive 
effects on health outcomes (Valeri, 2017; Pan, 2018; Kupsco, 2019). 
Manganese (Mn) and lead (Pb) act non-additively to disrupt neuro-
development in both animal models (Shukla and Chandra, 1987; 
Chandra et al., 1981) and observational studies in children (Kim, 2009; 
Lin, 2013; Claus Henn, 2012). Accurately characterizing the health risk 
of metal mixtures requires accurate estimates of exposure for each 
metal. When assessing the effects of metal exposure, the level of expo-
sure is estimated through the use of exposure biomarkers–the mea-
surement of a compound or its metabolite in a specific medium (e.g., 
blood, urine, etc.) to approximate the internal concentration (Phoon, 
1988). However, different metals distribute differently across the body 
due to their unique toxicokinetic properties, i.e., the process by which 
chemicals enter the body and are metabolized and excreted. Addition-
ally, exposure may occur from multiple sources that can alter the ki-
netics and dynamics, particularly when first pass metabolism does not 
occur. Manganese, for example, more readily enters the circulation from 
ambient exposure (via inhalation) than from oral ingestion for this 
reason (Leggett, 2011). Thus, a single exposure biomarker may not fully 
characterize the internal levels of a metal, let alone multiple chemicals 
simultaneously (Grandjean and Budtz-Jorgensen, 2010; Grandjean and 
Budtz-Jorgensen, 2007). This can result in inaccurate or even biased 
estimates of exposure for different metals, leading to exposure misclas-
sification when they are combined in a mixture analysis that uses only a 
single biomarker medium. Such misclassified exposure estimates hinder 
our ability to understand the neurocognitive effects of metals both 
individually and as part of a mixture (Weisskopf et al., 2018; Grandjean 
and Herz, 2011; Zeger, 2000; Grandjean et al., 2003). 

Multiple media, including blood, hair, urine, nails, and even teeth, 
have been used to measure exposure to Pb and Mn individually (Abadin, 
2007, 2012). For Pb, blood is considered to be the most reliable 
biomarker for research, clinical use, and public health surveillance 
(Abadin, 2007; Barbosa et al., 2005). However, there is a lack of 
consensus regarding an ideal biomarker for Mn (Williams, 2012; Jursa 
et al., 2018; Viana, 2014; Hassani et al., 2016). Researchers assessing the 
relationship between Mn levels, measured using different biomarkers, 
and cognition have found associations using Mn levels measured using 
certain biomarkers, but not others (Menezes-Filho et al., 2011; Riojas- 
Rodriguez, 2010). Determining an ideal biomarker for Mn is compli-
cated by the role of Mn as a nutrient (Aschner and Aschner, 2005), 
making it biologically different than Pb, which has no known natural 
biological role. Nutrient metals are transported in blood to tissues to 
serve biological functions and therefore levels in fluids and tissues 
reflect more than exposure and biotransformation. They reflect physi-
ologic levels in the context of nutritional status for that nutrient and 
their nutritional need typically varies over the lifespan. Thus, levels of 
Mn are tightly regulated in blood with excess Mn in the blood being 
rapidly removed by the liver and excreted in the bile and urine (Klaas-
sen, 1974; Malecki et al., 1996). This may limit the utility of blood as a 
biomarker of Mn exposure, as blood Mn may not represent excess 
exposure until levels are very high. Measurements of Mn using hair as 
the biomarker have been most consistently associated with neuro-
developmental deficits (Coetzee, 2016); however, it may not be ideal as 
a measurement of occupational exposure due to its contamination from 
Mn in dust (Bader et al., 1999). Saliva is a more recent and promising 

biomarker of Mn exposure, however relatively little is known about its 
utility to reflect exposure levels or associated health risks (Butler, 2018). 

Though blood is not an ideal biomarker of Mn exposure, most 
research into the joint effects of Pb and Mn exposure on cognition have 
nonetheless used blood Mn (Valeri, 2017; Liu, 2018; Kim, 2009; Lin, 
2013; Claus Henn, 2012). Use of blood as an exposure biomarker may 
lead to an underestimation of the risks posed by excess Mn as well as the 
joint effects of Pb and Mn. No single biomarker media may be ideal to 
estimate both Pb and Mn exposure. However, all biomarker media 
provide some information about the level of internal concentration 
across individuals and this information is likely to be complementary as 
they represent different kinetic properties (excretion, secretion, plasma 
compartmentalization, etc.). A potential solution to estimating the joint 
impact of Pb-Mn co-exposure is to quantify exposure using multi-media 
biomarkers (MMBs) (Levin-Schwartz, 2020). MMBs are constructs 
derived using statistical methods for environmental mixtures across 
exposure biomarkers measured in different biological media. Since they 
integrate exposure information across biomarkers, MMBs can be better 
suited to estimate the effects of metals on cognition than selecting a 
single biomarker as the exposure metric, which discards exposure in-
formation from the other biomarkers (Levin-Schwartz, 2020; Menezes- 
Filho, 2018). 

In this study, we test two hypotheses. The first is that the choice of 
biomarker medium used to measure exposure affects the strength of the 
joint effects as well as the contribution of each metal to the joint effect. 
The second hypothesis is that integrating information across biomarker 
media, through the use of MMBs, can improve the estimation of the joint 
impact of environmental exposures on health outcomes compared to 
traditional single biomarker media approaches. We derive MMBs using 
weighted quantile sum regression (WQS), a mixtures analysis technique. 
In order to test these hypotheses, we study a relatively straightforward 
combination of two metals, Pb and Mn. We estimate the combined ef-
fects of Pb and Mn on cognition using MMBs and the Third Edition of the 
Wechsler Intelligence Scale for Children (WISC-III) in participants in the 
Public Health Impact of Manganese Exposure (PHIME) cohort in Italy. 
We estimate the combined effect using WQS and measure Pb and Mn in 
blood, hair, nails, urine, and saliva. We compare the combined effects, 
estimated using each medium individually, to combined effects esti-
mated when the level of exposure to Pb and Mn is estimated using 
MMBs. 

2. Materials and methods 

2.1. Description of the study population 

The subjects in this study were drawn from the PHIME cohort based 
in the northern Italian province of Brescia, Lombardy. Between 2010 
and 2013, a total of 720 participants were recruited through the local 
public schools. Eligibility criteria for PHIME included: being both born 
and raised within the study area, being between 10 and 14 years of age, 
and being from a family that had lived in the study area for at least two 
generations. The exclusion criteria included: having a neuro-
developmental disease or a family history of neurodegenerative disease, 
using medications with known neuro-psychological side effects, and 
having known visual or motor deficits. A fuller description of both the 
recruitment process and study design has been previously published 
(Lucchini, 2012). Eligible adolescents as well as their parents received 
detailed explanation of the study procedures prior to providing written 
informed consent to participate. The study protocols were approved by 
the following Institutional Review Boards (IRBs): the University of 
Brescia, the University of California, Santa Cruz, and the Icahn School of 
Medicine at Mount Sinai. Complete data for all biomarkers, outcomes, 
and covariates of interest were available from 259 adolescents and these 
comprise the final sample used in this analysis. 
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2.2. Pb and Mn biomarker measurements 

The collection of biological samples (blood, urine, hair, nails, and 
saliva) from the PHIME participants, which occurred concurrently with 
the neurological testing, has been described previously (Lucas, 2015; 
Lucchini, 2012). Whole blood samples were collected using butterfly 
catheters into trace metal-free vacutainers. Spot urine samples were 
collected into sterile polyethylene containers. Hair samples were 
collected using stainless steel scissors and stored in paper envelopes. 
Fingernail samples were collected with stainless steel nail clippers and 
stored in paper envelopes. Saliva samples were drawn through plastic 
straws into trace metal free microfuge tubes. The concentrations of Mn 
and Pb in all media were measured using magnetic sector inductively 
coupled plasma mass spectrometry (Thermo Element XR ICP–MS), 
described in detail elsewhere (Smith, 2007; Eastman et al., 2013). 

2.3. Covariate data 

Trained study staff collected sociodemographic information through 
standardized questionnaires either at in-person visits or over the phone. 
Socioeconomic status (SES, categorized as low, medium, and high) was 
determined using an Italy-specific methodology that accounts for 
parental occupation and education (Cesana et al., 1995). 

2.4. Wechsler Intelligence Scale for children (WISC-III) 

The measure of cognition used in this study was the WISC-III, Italian 
language version, normed for children aged 6–16 years (Orsini and 
Picone, 2006). The WISC-III is composed of 10 subtests, grouped into 
two domains. These domains are verbal (measuring language-based 
skills) and performance (measuring non-verbal, perceptual organiza-
tion). Verbal IQ and Performance IQ composite scores were created by 
combining the five subtests in each domain. The subtests comprising the 
Verbal IQ score are Information, Similarities, Arithmetic, Vocabulary 
and Comprehension. The subtests comprising the Performance IQ score 
are Picture Completion, Coding, Picture Arrangement, Block Design and 
Object Assembly. The Verbal and Performance composite scores are 
combined to derive a measure of overall general intelligence, Full Scale 
IQ. The WISC-III was administered by two trained neuro-psychologists 
who were blind to the participants’ level of metal exposure. Age- 
adjusted standard scores from the Italian normative WISC-III popula-
tion were used for all analyses. The three composite scores, Verbal IQ, 
Performance IQ, and Full Scale IQ, were the outcomes in the analyses. 

2.5. Statistical analyses 

2.5.1. Weighted quantile sum regression (WQS) 
A fuller explanation of WQS has been presented previously (Carrico 

et al., 2014). Briefly, WQS is a technique that estimates a set of weights, 
w, that maximize the likelihood of the following regression equation 

E[y] = β0 + β1

(
∑B

b=1
wbqb

)

+ zTϕ, (1)  

where y is the outcome; β0 is the intercept; β1 is the regression coeffi-
cient for the weighted sum of the quantiled exposures, qb; B is the 
number of exposures; z = [z1,⋯, zC] is the set of covariates; and ϕ is the 
set of regression coefficients corresponding to z. The weights are con-
strained such that 0 ≤ wb ≤ 1 and 

∑B
b=1wb = 1 (Carrico et al., 2014). For 

these analyses, the exposure data were grouped into quartiles. Addi-
tionally, 1000 bootstrap datasets were used and wbwas estimated as the 
average across the bootstrap estimates. The directionality of the asso-
ciation of the WQS index was constrained to be non-positive. The WQS 
assumptions of linearity and directional homogeneity were validated 
through visual inspection of residuals and comparing the fit of the linear 
models to nonlinear (quadratic) models. Due to our limited sample size, 

the data were not separated into training and testing datasets, thus the 
derived WQS indices may suffer from overfitting and, therefore, may not 
generalize to data from other populations. As with all observational 
studies, additional validation of these result in other populations is 
required. Since 0 ≤ wb ≤ 1 and 

∑B
b=1wb = 1, the weights can be used to 

determine the relative contribution of each exposure, in this case Pb and 
Mn, to the combined or joint effect. 

2.5.2. Multi-media biomarkers (MMBs) 
To create our MMBs, we integrated metal levels from blood, urine, 

hair, nails, and saliva using WQS into separate indexes representing Pb 
exposure and Mn exposure. MMBs integrate exposure information across 
multiple biomarkers and derive exposure estimates that we propose 
better represent the overall body burden (Levin-Schwartz, 2020). The 
derivation of an MMB enables the estimation of weights that highlight 
the contributions of each biomarker medium to the MMB. When using 
MMBs to compute the joint effect of Pb and Mn on IQ, three WQS models 
were estimated per outcome (Verbal IQ, Performance IQ, and Full Scale 
IQ) (Fig. 1). The first WQS was performed with all Pb exposure bio-
markers to estimate the Pb MMB. The second WQS was performed with 
all Mn exposure biomarkers to estimate the Mn MMB. The final WQS 
model estimated the joint effect of the Pb MMB, estimated in first WQS 
model, and the Mn MMB, estimated in the second WQS model. Thus, 
these analyses can be seen as hierarchical WQS analyses, where the first 
level is across media for a single metal and the second level is across 
metals (Levin-Schwartz, 2019). 

2.5.3. Data screening and analysis 
First, the Spearman correlation between the biomarkers for each 

metal were estimated. The three main types of analyses are depicted in 
Fig. 1. Since each biomarker is on a different scale, all exposure levels 
were first converted into quartiles. The first set of analyses, shown in 
Fig. 1a, were linear regressions, where the outcome was the neuro-
developmental outcome and the exposure was the metal exposure level 
measured in each medium. These analyses were repeated for each 
combination of metal and biomarker medium, resulting in 10 regression 
models. In the second set of analyses, shown in Fig. 1b, WQS was used to 
estimate the combined effect of Pb and Mn on neurodevelopment, where 
the levels of Pb and Mn were quantified using each medium separately. 
Thus, a separate WQS index was estimated for each medium (i.e., a WQS 
index for blood Pb-blood Mn, a WQS index for urine Pb-urine Mn, etc.). 
Then, the associations between the derived WQS indices and neuro-
development were assessed using linear regressions. In the final set of 
analyses, shown in Fig. 1c, MMBs for Pb and Mn were estimated by 
applying WQS across the exposure estimates for each metal separately, 
as discussed in the previous section. Once MMBs were estimated for Pb 
and Mn, they were categorized into quartiles and a second WQS was 
performed to estimate the joint effect of Pb and Mn on neuro-
development. The association between the derived Pb-Mn index and 
neurodevelopment was determined using linear regressions. All linear 
regressions were adjusted for sex and SES (WISC IQ scores were adjusted 
for age). The selection of these covariates was based upon prior research 
in the same cohort (Butler, 2018; Lucchini, 2012; Levin-Schwartz, 2019; 
Bauer, 2017). All analyses were performed using SAS 9.4. Note that, 
generally in WQS, weights of components are not interpreted if the joint 
effect is not significant. However, for completeness, we also show the 
weights for non-significant models in the results. 

3. Results 

3.1. Descriptive statistics 

The demographic information for the 259 subjects in this study are 
shown in Table 1. Slightly more than half of the subjects (51.0%) were 
male and the average age was 12.2 years. Over half of the subjects were 
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from medium SES (53.3%), while 24.7% of participants were from high 
SES and 22.0% were from low SES. The concentrations of Pb and Mn in 
the different biological media are shown in Table 2. We show the 
Spearman correlation between each of the Pb biomarkers in Supple-
mental Table 1 and each of the Mn biomarkers in Supplemental Table 2. 
In general, the Pb biomarkers had stronger correlations amongst each 
other than the Mn biomarkers did. Blood Pb was correlated with urine 
Pb (rs: 0.41, p < 0.01), hair Pb (rs: 0.24, p < 0.01), and nail Pb (rs: 0.26, 
p < 0.01). Urine Pb was correlated with nail Pb (rs: 0.15, p < 0.05) and 

hair Pb was correlated with both hair Pb (rs: 0.22, p < 0.01) as well as 
saliva Pb (rs: 0.18, p < 0.01). Hair Mn was correlated with urine Mn (rs: 
0.14, p < 0.05), nail Mn (rs: 0.17, p < 0.01), and saliva Mn (rs: 0.22, p <
0.01). Nail Mn was also correlated with blood Mn (rs: − 0.12, p < 0.05) 
and urine Mn (rs: 0.14, p < 0.05). 

3.2. Associations between combined Pb and Mn on cognition 

In this section, we present the traditional linear regression analyses, 
followed by the single matrix WQS analyses, and finally the results of the 
MMBs analysis for each WISC-III outcome, Full Scale IQ, Verbal IQ, and 
Performance IQ. 

3.2.1. Associations with Full Scale IQ 
In covariate-adjusted models, though we found no association be-

tween metal levels in each medium individually and Full Scale IQ 
(Supplemental Figs. 1 and 2), saliva Mn was found to be marginally 
associated with Full Scale IQ (-1.2 [-2.5, 0.2], 0.09). For the media- 
specific mixture effects, when Pb and Mn levels were estimated using 
saliva, there was a marginal association between the Pb-Mn WQS index 
and Full Scale IQ (β [95% CI], p-value: − 1.3 [− 2.7, 0.2], 0.09). 

In covariate adjusted models (Fig. 2), only the joint effect of Pb and 
Mn estimated using MMBs was associated with Full Scale IQ scores at a 
p < 0.05 threshold for significance. A quartile increase in this Pb-Mn 
WQS index was associated with a 1.9 point ([95% CI], p-value: [0.3, 
3.5], 0.02) decrease in Full Scale IQ. Weights highlighting the contri-
bution of each metal to the WQS index (Fig. 3) indicate that Pb 
contributed the majority of the weight (72%), with Mn contributing less 
(28%). Weights highlighting the contributions of each medium to the 
MMBs (Tables 3 and 4) indicate that top contributors to the Pb MMB 
were urine (26%), hair (23%), blood (22%), and saliva (20%). Saliva 
(49%) and hair (23%) were the top contributors to the Mn MMB. 

3.2.2. Associations with Verbal IQ 
When the association for each metal-biomarker combination with 

Verbal IQ were assessed individually (Supplemental Figs. 3 and 4), 
blood Pb and saliva Mn were found to be associated with Verbal IQ. 

Fig. 1. Diagram of main analyses conducted to 
measure the effects of Pb and Mn on cognition. 
(a) The association between cognition and each 
biomarker for both Pb and Mn was assessed using 
traditional linear regression. (b) WQS was per-
formed to measure the joint effect of Pb and Mn 
for each biomarker individually. (c) MMBs for Pb 
and Mn were derived by applying WQS to each 
biomarker for each metal. Then, the joint effect of 
Pb and Mn on cognition was assessed by applying 
WQS to the Pb and Mn MMBs. All models were 
adjusted for age, sex, and SES.   

Table 1 
Demographic information and descriptive statistics.  

Demographics Category N (%) 

Total 259 (100%) 
Sex Male 132 (51.0%)  

Female 127 (49.0%)  

Socioeconomic Status Low 57 (22.0%)  
Medium 138 (53.3%)  
High 64 (24.7%)  

Average ± SD (range)  

Age (years) 12.2 ± 1.0 (10–14) 

SD: Standard deviation. 

Table 2 
Metal concentrations in exposure biomarkers (n = 259).  

Metal Biomarker Medium Median Interquartile Range 

Lead Blood (μg/dL) 1.27 0.84 
Urine (μg/L) 0.64 0.48 
Hair (μg/g) 0.09 0.19 
Nails (μg/g) 0.12 0.38 
Saliva (μg/L) 0.56 1.54  

Manganese Blood (μg/dL) 1.09 0.45 
Urine (μg/L) 0.22 0.30 
Hair (μg/g) 0.07 0.07 
Nails (μg/g) 0.16 0.25 
Saliva (μg/L) 3.98 9.29  
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Quartile increases in blood Pb and saliva Mn were associated with 1.5 
point (β [95% CI], p-value: [0.0, 2.9], 0.04) and 1.9 point ([0.6, 3.3], 
0.01) decreases in Verbal IQ, respectively. Marginally significant asso-
ciations were observed between Verbal IQ and hair Pb (-1.2 [-2.6, 0.2], 

0.09) as well as hair Mn (-1.3 [-2.7, 0.1], 0.08). 
The joint effects of Pb and Mn estimated using metal concentrations 

from blood, hair, and saliva were all associated with Verbal IQ scores 
(Fig. 4). Quartile increases in the Pb-Mn WQS indices were associated 
with 1.5 point ([95% CI], p-value: [0.0, 3.0], 0.05), 1.6 point ([0.1, 3.2], 
0.04), and 2.0 point ([0.6, 3.4], p < 0.001) decreases in Verbal IQ for 
blood, hair, and saliva, respectively. The contributions of Pb and Mn to 
the WQS indices differed depending on the medium used to estimate 
exposure (Fig. 5). For blood, the contributions to the WQS index were 
95% Pb and 5% Mn. For hair, the contributions were 43% Pb and 57% 
Mn. For saliva, the contributions were 3% Pb and 97% Mn. 

The joint effect of Pb and Mn estimated using MMBs was Verbal IQ 
scores (Fig. 4). Quartile increases in the Pb-Mn WQS index was associ-
ated with 2.8 point (β [95% CI], p-value: [1.0, 4.5], p < 0.001) decreases 
in Verbal IQ. The contributions for Pb and Mn to this index were 42% 
and 58%, respectively (Fig. 5). Weights highlighting the contributions of 
each medium to the MMBs (Tables 3 and 4) indicate that top contribu-
tors to the Pb MMB were blood (34%), hair (28%), and urine (17%). 
Saliva (44%), hair (20%), and nails (18%) were the top contributors to 
the Mn MMB. 

3.2.3. Associations with Performance IQ 
Neither Pb nor Mn levels in any individual biomarker was found to 

Fig. 2. Beta coefficients and 95% confidence intervals representing the association between the combination of Pb and Mn and age-adjusted Full Scale IQ. Beta 
coefficients reflect quartile changes in the combination. The joint effect is estimated using WQS. All models were adjusted for sex and SES. 

Fig. 3. Weights highlighting the contribution of Pb and Mn to the joint effect for Full Scale IQ. Higher weights indicate a greater contribution.  

Table 3 
Media contributions to the Pb MMBs.  

Biomarker Medium Verbal IQ Performance IQ Full Scale IQ 

Blood 34% 10% 22% 
Urine 17% 29% 26% 
Hair 28% 21% 23% 
Nails 8% 23% 9% 
Saliva 13% 17% 20%  

Table 4 
Media contributions to the Mn MMBs.  

Biomarker Medium Verbal IQ Performance IQ Full Scale IQ 

Blood 5% 9% 6% 
Urine 14% 16% 12% 
Hair 20% 28% 23% 
Nails 18% 3% 10% 
Saliva 44% 44% 49%  
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Fig. 4. Beta coefficients and 95% confidence intervals representing the association between the combination of Pb and Mn and age-adjusted Verbal IQ. Beta co-
efficients reflect quartile changes in the combination. The joint effect is estimated using WQS. All models were adjusted for sex and SES. 

Fig. 5. Weights highlighting the contribution of Pb and Mn to the joint effect for Verbal IQ. Higher weights indicate a greater contribution.  

Fig. 6. Beta coefficients and 95% confidence intervals representing the association between the combination of Pb and Mn and age-adjusted Performance IQ. Beta 
coefficients reflect quartile changes in the combination. The joint effect is estimated using WQS. All models were adjusted for sex and SES. 
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be associated with Performance IQ (Supplemental Figs. 5 and 6). 
Additionally, none of the joint effects of Pb and Mn were associated with 
Performance IQ scores (Fig. 6). However, when Pb and Mn levels were 
estimated using MMBs, there was a marginal association between the 
Pb-Mn WQS index and Performance IQ (β [95% CI], p-value: − 1.5 
[− 3.3, 0.2], 0.08). Weights highlighting the contribution of each metal 
to the WQS index (Fig. 7) indicate that Pb contributed 55% of the weight 
to the index and Mn contributed 45%. 

4. Discussion 

In this study, we examined the joint association between two metals, 
Pb and Mn, on childhood IQ, using novel methods–WQS and MMBs. 
Overall, we found that mixture results differed depending on the me-
dium used to measure exposure and that the MMB approach had the 
most power to find an effect. We also found that MMBs uncovered 
consistent associations between the combination of Pb and Mn and 
neurodevelopment that no single biomarker media could replicate. We 
propose that this is because MMBs combine information across multiple 
exposure biomarkers and create a more comprehensive estimate of 
exposure than any individual biomarker. Our MMB approach also allows 
us to estimate the relative contributions of both the metals and the 
biomarker media to the mixture effect. The top contributors to the 
MMBs were blood for Pb and saliva for Mn, which also showed the 
strongest individual associations with cognition for Pb and Mn, 
respectively. Since the weights estimate the relative contribution of each 
biomarker media to the MMB, they can be used to inform future research 
on the biospecimens that are most critical to collect in order to explore 
the effects of metal mixtures on cognition. It is important to emphasize 
that the issues of bias in exposure estimation that we discuss become 
more acute as the mixture becomes larger, since the likelihood that a 
single biomarker is an accurate measure of exposure for every element of 
the mixture becomes increasingly less likely. 

Biomarkers of exposure are influenced by toxicokinetic properties, i. 
e., the rate and manner in which the chemical is absorbed, distributed, 
metabolized, and excreted from the body, which may not uniformly 
correlate with toxicodynamics, i.e., the interaction with and alterations 
to biological processes that cause a toxic effect. The relationship be-
tween the two differs for each chemical and may not be fully captured by 
using a single biomarker medium, especially when each medium rep-
resents different aspects of kinetics (compartmentalization, secretion, 
excretion, etc.). By integrating exposure information across media, we 
can better capture the internal concentration. In this study, we observed 
strong evidence for the combined effect of Pb and Mn on Verbal IQ 
across multiple media. However, the strength of this association and the 
contribution of each metal to the joint effect (the WQS index) differed 

depending on the biomarker chosen to estimate exposure. For example, 
when comparing two significant WQS indices, one where exposure was 
measured using blood Pb/Mn and the other using saliva Pb/Mn, the 
contribution of Pb was 95% when blood was used for both exposures. 
However, when saliva was used, the relationship was very different as 
only 3% of the weight was attributed to saliva Pb. This range of values is 
likely due to toxicokinetic differences between these media as bio-
markers for Pb and Mn. In other words, blood Pb is considered to be the 
gold standard biomarker of Pb exposure for research (Abadin, 2007; 
Barbosa et al., 2005) and blood Pb was significantly associated with 
Verbal IQ. In contrast, saliva may be a better biomarker of Mn exposure, 
as blood Mn is under physiologic control due to the role of Mn as a 
nutrient. In this study, blood Mn was not significantly associated with 
Verbal IQ; however, saliva Mn was significantly associated with Verbal 
IQ. We hypothesize that this may be because levels of blood Mn are more 
strictly regulated than saliva Mn, making saliva a better measure of 
excess Mn exposure than blood. It is important to note that the exact 
cause and dynamics of Mn secretion in saliva is not well understood, 
though there is some evidence that Mn is actively secreted and does not 
passively diffuse into saliva. Further research is needed to replicate and 
expand upon the current findings as well as further clarify the dynamics 
of Mn. 

The health impacts of chemical exposures reflect the individual 
toxicodynamics of each chemical. MMBs address the potential 
misalignment between the toxicokinetics and toxicodynamics by inte-
grating information across different media that reflect different aspects 
of toxicokinetics, such as excretion (urine), secretion (hair, nails, and 
saliva), and compartmentalization of dose (blood). By doing so, MMBs 
can better reflect the overall body burden of exposure and should better 
correlate with toxicodynamics. Our results are consistent with this hy-
pothesis. We observed significant associations between the WQS indices 
derived when Pb and Mn exposure were estimated using MMBs and both 
Verbal IQ as well as Full Scale IQ. Traditional mixtures approaches 
would apply WQS to each medium individually (e.g., blood) rather than 
using a MMB. When we applied such traditional approaches, the asso-
ciations found were uniformly weaker than when applying WQS to the 
MMBs. This is likely because we are integrating exposure information 
across media when using MMBs, therefore we do not introduce any bias 
through the selection of a single biomarker over another. Additionally, 
the weights estimated for the MMB enable the determination of the 
contributions of each medium and each metal in each medium to the 
MMB. Investigating these weights reveals that blood and then hair were 
the media that contributed most to the Pb MMBs across the different 
outcomes, while saliva followed by hair were the media that contributed 
most to the Mn MMBs. Note that we reached a similar conclusion about 
the media that best capture the internal concentration of Pb and Mn 

Fig. 7. Weights highlighting the contribution of Pb and Mn to the joint effect for Performance IQ. Higher weights indicate a greater contribution.  
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when comparing the WQS indices across media. However, by using 
MMBs we are able to leverage each biomarker’s strengths as a surrogate 
measure of the internal level instead of ignoring this information by only 
selecting individual biomarkers. Additional work is needed to replicate 
and expand upon these findings. 

Significant joint effects imply that there are underlying biological 
connections between Mn and Pb. There are multiple mechanisms by 
which Pb and Mn can jointly act to impact brain function and neuro-
development (Neal and Guilarte, 2013; Stackelberg et al., 2015). First, 
co-exposure to Pb and Mn has been shown to increase uptake and levels 
of Pb in the brain (Malhotra et al., 1984; Chandra et al., 1984; Carfagna 
et al., 1996). Additionally, both Pb and Mn have been shown to interfere 
with the transmission of neurotransmitters, including dopamine, gluta-
mate, and gamma aminobutyric acid (Chandra et al., 1981; Lasley and 
Gilbert, 1996; Lasley and Gilbert, 2002; Neal et al., 2010; Guilarte, 
2006; Guilarte, 2008). These neurotransmitters are key to the proper 
function and development of the brain (Eshel et al., 2013), thus 
disruption in their levels impacts learning and development. Another 
mechanism by which Pb and Mn both affect the brain is disruption of the 
calcium (Ca) signaling. Both metals have been shown to increase the 
levels of cellular Ca2+ in the brain, hindering communication between 
neurons (Filipov and Dodd, 2012; Lidsky and Schneider, 2003; Neal and 
Guilarte, 2010). It is possible that some or all of these mechanisms may 
be contained in the same pathway and that these effects happen in 
sequence rather than simultaneously (Stackelberg et al., 2015). In all the 
above cases, joint exposure to higher doses would lead to greater 
toxicity. 

There are multiple strengths to our study. We measured Pb and Mn 
levels in multiple media from the same people at the same time, which 
enables us to directly compare the joint effects of Pb and Mn across 
media. Such an approach is not common in epidemiological studies, but 
is important since doing so enables evaluation of the extent to which the 
joint effect is impacted by the selection of the exposure biomarker. The 
use of MMBs allows us to avoid the bias that is introduced through the 
selection of a single biomarker to measure the joint effects of Pb-Mn. 
This source of bias should not be underestimated in mixtures research 
as we found in our results that no single medium is an ideal biomarker 
for both Pb and Mn. Our use of a relatively straightforward two metal 
combination enables us to clearly highlight the problems of biomarker 
selection in mixtures studies. Highlighting these issues would be less 
clear with a more complex mixture effect. We used the same powerful 
mixture method, WQS, for all analyses facilitating comparisons of the 
joint effects of Pb and Mn and contributions of metals across the 
different media. 

Our study also has some limitations. We had a relatively small 
sample size, though we were still able to detect robust associations even 
with this modest sample size. This may reflect added power from using 
MMBs. We did not split our data into training and testing datasets, thus 
we may have some issues with overfitting. The overall level of exposure 
for this population is relatively low compared to other populations, 
though these levels are likely similar to most adolescents in other 
developed countries (Pelc et al., 2016; da Rocha Silva, 2018). Since the 
distribution of Pb and Mn in the body can differ depending on the level 
of exposure, our conclusions about the biomarkers to measure Pb-Mn 
effects may not be fully generalizable to populations with higher 
levels of exposure. Our methods only considered additive effects, future 
work will explore the estimation of MMBs using methods that can ac-
count for multiplicative or other non-linear effects. Additionally, the 
performance of different biomarkers may also be dependent on the 
target organ under study, thus the results may not fully generalize to 
renal or cardiac endpoints. 

5. Conclusion 

In this work, we have examined the role that biomarker selection 
plays when estimating the joint effects of Pb and Mn on cognition. We 

have found that, though blood and saliva seem to be the best biomarkers 
to measure Pb and Mn exposure individually, hair was the best 
biomarker for the measurement of the joint effects of Pb and Mn. We also 
found that estimates of the combined effect of Pb and Mn using MMBs 
were stronger and more robust than when the same effects were esti-
mated using the biomarkers individually. As the epidemiologic explo-
ration of the impacts of chemical mixture progresses and mixtures 
become more complicated, appropriate biomarker selection will become 
even more important in order to estimate risk and MMBs are an 
important way to avoid bias in such estimation. 
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