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Introduction
The connection between environmental chemical exposures 
and human health/diseases (eg, cancer) is a complex multi-
dimensional problem that is of great interest to public health 
researchers. Further, exposure to environmental chemical 
mixtures varies across location and behavior patterns. For 
example, exposure patterns to polycyclic aromatic hydrocar-
bons (PAHs) from automobile exhaust in dense urban sites 
such as Detroit differ from those in rural, agricultural sites 
such as Iowa. However, there are many sources of PAHs 
besides automobile exhaust, and different sources may explain 
different levels across space. For example, PAH concentrations 
have been found to be associated with residence age.1,2 Some 
environmentally persistent chemicals such as polychlorinated 
biphenyls (PCBs) may be relatively similar in urban and rural 
areas. Total PCB levels have been found to be positively asso-
ciated with percentage of developed land or population density 
and housing age.3 Regardless, exposure studies demonstrate 

complex correlation patterns among environmental chemicals 
that may vary across regions.4

Because individuals are exposed to multiple chemicals 
simultaneously, it is important to examine the relationship 
between chemical mixtures and disease risk. Our research 
focus is on developing analysis strategies that incorporate 
larger sets of chemicals, which are more representative to 
actual human exposure. In such a high-dimensional frame-
work, some factors may increase risk, some may diminish risk, 
and others may have no effect on risk. The goal is to use an 
analysis strategy that most efficiently detects the signals and 
deemphasizes the noise in the data. Furthermore, we aim to 
develop and assess methods that accommodate site-specific 
exposure patterns and have the ability to accurately discern 
whether or not a chemical is associated with the outcome 
of interest.

Through weighted quantile sum (WQS) regression,5 
we are able to estimate a body burden index within a set of 
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correlated environmental chemicals, and further estimate the 
association between the index and an outcome of interest. 
Additionally, the estimated chemical weights allow us to make 
generalized inference concerning relative chemical impor-
tance. WQS regression is constrained to model associations 
between the outcome and chemicals that are in one direction 
(all non-negative or all non-positive), making it appropriate in 
a risk setting where the goal is to identify exposures that are 
positively associated with a health outcome. As such, WQS 
regression is designed for variable selection with less emphasis 
on risk prediction.

Few existing studies of chemical exposure and disease 
risk have made efforts to consider the impact of spatially vary-
ing exposure patterns on the effect of a chemical mixture. One 
exception is Czarnota et  al.4, where the authors take a site-
specific approach in a preliminary effort to assess the effects of 
spatially varying exposure patterns among chemical mixtures 
on the risk of non-Hodgkin lymphoma (NHL). The objective 
in that work was to apply statistical methods to detect bad 
actors in environmental chemical mixtures, while consider-
ing different exposure patterns based on the geographic site. 
The focus here is on assessing through simulation studies the 
accuracy of WQS regression in detecting subsets of chemi-
cals associated with health outcomes (binary and continuous) 
in site-specific analyses and in non-site-specific analyses. We 
based the simulation study on data from the National Cancer 
Institute Surveillance Epidemiology and End Results Pro-
gram (NCI-SEER) case–control study of NHL to achieve 
realistic exposure situations, while setting which chemicals 
were truly associated with the health outcomes. For compari-
son, we also evaluated the performance of several penalized 
regression methods in correctly classifying chemicals as bad 
actors or unrelated to the outcome.

Methods
NCI-SEER study population. The NCI-SEER NHL 

population-based case–control study design has been previ-
ously described.6,7 Briefly, the study was conducted in Iowa, 
Los Angeles County, and the metropolitan areas of Detroit 
(Macomb, Oakland, and Wayne counties) and Seattle (King 
and Snohomish counties). Eligible cases were aged 20–74 
years, diagnosed with a first primary NHL between July 1998 
and June 2000, and uninfected with HIV. In Seattle and 
Iowa, all consecutive cases were chosen. In Detroit and Los 
Angeles, all African American cases and a random sample of 
white cases were eligible for study, allowing for oversampling 
of African American cases. Of the 2,248 potentially eligible 
cases, 320 (14%) died before they could be interviewed, 127 
(6%) were not located, 16 (1%) had moved away, and 57 (3%) 
had physician refusals. Of the 1,728 remaining cases, 1,321 
(76%) participated. Controls were selected from Center for 
Medicare and Medicaid Services files ($65 years) or the gen-
eral population using random digit dialing (,65 years) and 
were frequency matched to cases by sex, age, race, and study 

site. Of the 2,409 potentially eligible controls, 2,046 were able 
to be located and contacted, and 1,057 (52%) of these subjects 
participated.

Computer-assisted personal interviews were conducted 
in the home of each participant. Interviewers asked about 
demographics, including race and education, age of the home, 
housing type, the presence of oriental rugs, pesticide use in 
the home and garden, residential and occupational histories, 
and other factors. As described in detail,6,8 dust was collected 
between February 1999 and May 2001 from vacuum clean-
ers of participants who gave permission (93% of cases, 95% 
of controls) and who had used their vacuum cleaner within 
the past year and owned at least half of their carpets or rugs 
for five years or more (695 cases (57%), 521 controls (52%)). 
Dust samples from 682 cases (98%) and 513 controls (98%) 
were successfully analyzed between September 1999 and 
September 2001.

A total of 27 chemicals were measured in house dust 
(5 PCBs, 7 PAHs, and 15 pesticides). The PCBs were 
congeners 105, 138, 153, 170, and 180. The PAHs were 
benz(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, 
benzo(k)fluoranthene, chrysene, dibenz(a,h)anthracene, and 
indeno(l,2,3-cd)pyrene. The pesticides were α-chlordane, 
γ-chlordane, carbaryl, chlorpyrifos, cis-permethrin, trans-
permethrin, 2,4-dichlorophenoxyacetic acid (2,4-D), DDE,  
dichlorodiphenyltrichloroethane (DDT), diazinon, dicamba, 
methoxychlor, o-phenylphenol, pentachlorophenol, and 
propoxur. Extraction and analysis were performed on 2-g 
aliquots of dust samples using gas chromatography/mass 
spectrometry (GC/MS) in selected ion monitoring mode. 
Concentrations were quantified using the internal stan-
dard method. Usual detection limits were 20.8  ng/g of 
dust for α-chlordane, γ-chlordane, DDE, DDT, propoxur, 
o-phenylphenol, PAHs, and PCBs; 42–84  ng/g for chlo-
rpyrifos, diazinon, cis-permethrin, dicamba, pentachlo-
rophenol, and 2,4-D; and 121–123  ng/g for carbaryl and 
trans-permethrin. Changes in analytic procedures during 
the study resulted in increased detection limits for methoxy-
chlor (from 20.7 to 62.5 ng/g). A small proportion of samples 
weighing less than 2 g had detection limits that were higher 
than the usual detection limits.

The laboratory measurements for the 27 analytes con-
tained various types of missing data, primarily when the 
concentration was below the minimum detection level. To 
a lesser extent, missing data occurred when there was co-
elution between the target chemical and interfering com-
pounds. Chemical concentrations were assumed to follow a 
log-normal distribution, and data were imputed using a fill-in 
approach to create 10 complete data sets for each of the 27 
analytes. Details about the imputation of analyte values have 
been published previously.6,9 A total of 1,180 participants had 
available measurements of all 27 chemicals. Of these par-
ticipants, 508 (43%) were controls and 672 (57%) were cases. 
With respect to study site, 202 (17%) were from Detroit, 340 
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(29%) from Iowa, 292 (25%) from Los Angeles, and 346 
(29%) from Seattle.

Our primary interest in the NCI-SEER NHL study is 
the chemical exposure patterns and the correlation structure 
of the exposures. As illustrated in Figure 1, the concentrations 
among the PCBs were similar across the four sites, while the 
concentrations of PAHs and pesticides varied considerably by 
site. More specifically, concentrations for all seven PAHs were 
notably elevated in Detroit, while elevated concentrations of 
pesticides were seen in Iowa (eg, 2,4-D and methoxychlor) 
and Los Angeles (eg, α- and γ-chlordane and propoxur).

The site-specific distributions of the Pearson pairwise 
correlation coefficients among the log-transformed concen-
trations are shown in Figure  2. The observed pairwise cor-
relation patterns are complex, with correlations ranging from 
slightly negative to nearly perfectly correlated within all four 
sites. When examining the correlations by chemical group, we 
see that for each site, the PAHs and PCBs demonstrated a 
high degree of intragroup correlation. The pesticides gener-
ally exhibited lesser intragroup correlation, with the exception 
of the pairwise correlations between metabolites and analogs. 
For each site, correlation within chemical group is further 
illustrated in Figure  3 and summarized in Table  1. We see 
that the PCBs were most highly correlated in Los Angeles, 
with 75% of the intragroup correlations greater than 0.81. 
Additionally, we see that the correlation among the PAHs was 
most pronounced in Detroit (pairwise correlations ranging 
from 0.95 to 0.99) where PAH exposure was the highest and 
least pronounced in Los Angeles (interquartile range (IQR) of 
0.68–0.86) where PAH exposure concentration was the low-
est. As demonstrated by the NHL data, chemical exposure 
patterns may vary in both concentration and correlation across 
space, illustrating the need to consider site-specific risk analy-
ses in the context of environmental chemical exposure.

Simulation study design. Using each of the four site-
specific correlation structures for the 27 chemicals in the NCI-
SEER NHL study, we generated data on a site-specific basis 
using the observed mean concentrations (from the log scale) 
and standard deviations, for each of the following three cor-
relation patterns: (1) 65% of the observed site-specific correla-
tion structure (moderate correlation), (2) 30% of the observed 
site-specific correlation structure (mild correlation), and  
(3) 1% of the observed site-specific correlation structure (near 
independence). We did not include the observed correlation 
patterns to generate data as the resulting correlation matrices 
were generally singular and could not be inverted.

The following seven chemicals (one PCB, two PAHs, and 
four pesticides/insecticides) were set to be associated with the 
response variable: PCB180 (X5), benzo(k)fluoranthene (X8), 
benzo(a)pyrene (X9), 2,4-D (X19), DDE (X20), methoxychlor 
(X24), and propoxur (X27). These chemicals were chosen in 
an effort to represent a wide range of correlations between 
and among the bad actors and benign chemicals. Correlation 
within the seven selected chemicals ranged from ‑0.08 to 0.94,  

with a median correlation of 0.14. We also ensured that at 
least one chemical was selected from each chemical group in 
an attempt to capture the variation in exposure patterns across 
the study sites. PCB 180 was purposefully selected to repre-
sent the PCBs because of its known link to NHL.

Given that chemical exposure patterns differed across 
site, the association with the outcome variable was assumed 
true only under the condition that the observed site-specific 
concentrations were high enough to have a health effect. More 
specifically, we assumed the association was true within a site 
if and only if more than 25% of the site-specific concentrations 
were higher than the overall median concentration. This con-
dition was satisfied for each of the seven specified chemicals in 
the Detroit, Iowa, and Seattle sites, and thus, all seven of the 
specified chemicals were set to be associated with the response 
when simulating data. For the Los Angeles site, over 75% of 
the observed concentrations for chemicals X8, X9, and X19 
were below the overall median concentration. Therefore, only 
four chemicals (X5, X20, X24, and X27) were set to be cor-
related with the outcome in Los Angeles.

For each correlation pattern, we simulated data where the 
selected chemicals (ie, the pre-specified chemicals that satis
fied the above condition) had a correlation of 0.1 with the res
ponse (weak association with outcome) as well as where the 
selected chemicals had a correlation of 0.3 with the response 
(strong association with outcome). To simulate the analyses 
of case–control study data, we calculated a disease indicator 
for subjects with the highest 30% of the simulated continuous 
response variable.

We simulated 100 data sets for each set of conditions (cor-
relation pattern and outcome correlation combination), with a 
sample size of N  = 1,000 for each site. The site-specific data 
sets were split into training and validation sets (50:50 split), 
and then concatenated to create an overall training and test-
ing data set. Thus, the site-specific sample size was N  = 1,000 
(500 for estimation and 500 for validation), while the overall 
sample size was N = 4,000 (2,000 for estimation and 2,000 
for validation).

Data were simulated for each site based upon the site-
specific observed mean vector (on the log scale) and covari-
ance matrix. The continuous response variable y was assumed 
to be normally distributed with a mean of 0 and variance 
of 1, ~ (0,1)y N , for each site. We used a dampening para
meter (0.65,0.30,0.01)k ∈  to diminish the site-specific 
correlations to 65%, 30%, and 1% of that observed using  
the equation R R I Ij jk= −( ) + , where R j

 denotes the observed 
matrix of correlations for site j and R j is the corresponding 
diminished correlation structure. In order to simulate a data 
set ~ ( , )N ∑Y M  with a specified correlation structure for a 
continuous response variable y and predictors 1 2, , , cx x x… , the 
following method was used according to Carrico et al.5

Let 1p c= + , and define ρp p×  as the correlation matrix 
between and among y and the chemicals in X. Let ∑ ×p p

 be 
the corresponding covariance matrix and 1p×S  be the vector 
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Figure 1. Distribution of chemical concentrations in the NCI-SEER NHL study by chemical group: (A) PCBs, (B) PAHs, and (C) pesticides/insecticides.
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of standard deviations. Additionally, let 1p×m  be the vector  
of observed sample means for the predictor variables and 
outcome y. We then define the matrix D S= diag( ), a square 
matrix of dimension p p×  with diagonal entries consisting of 
the standard deviations, and impose the desired correlation 

structure through the relationship between the correlation 
and variance given by ∑ = D Dρ .

Next, calculate the Cholesky decomposition U  of 
the covariance matrix ∑. That is, calculate Up p×  such that 
∑ = ′ × ×U Up p p p , noting that calculation of the Cholesky 
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decomposition requires that the covariance matrix be positive 
definite. Simulate  for 1, ,i n= …  and define 

. In other words,

	   

,

where each row is p-variate standard normal. Let 
 and define Y as Y M Z Un p n p n p p p× × × ×= + .  

Here, Y is the newly generated data matrix with mean 
E E E( ) ( ) ( )Y M ZU M Z M= + = + =  and variance Var( )Y =
Var Var Var Var( ) ( ) ( ) ( )M ZU M ZU U Z U U U+ = + = ′ = ′ = ∑. 
Thus, Yn p×  is distributed as N p ( , )M ∑ .

WQS regression. The primary method of risk analysis 
used in this study was WQS regression. The WQS approach 
estimates a weighted linear index in which the weights are 
empirically determined through the use of bootstrap sam-
pling. The approach considers data with c components scored 
into quantiles that are reasonable to combine into an index 
and potentially have a common outcome. The weights are con-
strained to be between 0 and 1 and sum to 1, reducing dimen-
sionality and addressing issues that arise with collinearity. For 

this analysis, the c = 27 chemical concentrations were scored 
into quartiles (to reduce the influence of outliers in skewed 
distributions), denoted by qi , where  for i = 1–c. 
For estimation of the weights, we split the simulated data 
into training and validation data sets of sizes N t and Nv ,  
respectively. A total of B = 100 bootstrap samples of size N t 
were generated from the training data and used to estimate 
the unknown weights wi  that maximized the likelihood for 
b = 1–B for the following nonlinear model:

	   
	 (1)

subject to the constraints

	   

In the above equation, wi  represents the weight for 
the ith chemical component qi  and the term  repre-

sents a weighted index for the set of c chemicals of interest. 
Furthermore, z denotes a vector of covariates determined 
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prior to estimation of the weights, and g  is a monotonic and 
differentiable link function that relates the mean, µ , to the 
predictor variables in the right-hand side of the equation. 
For this analysis, we considered a continuous outcome and a 
binary outcome with an identity link and a logit link for g  for 
the respective outcome variables.

For each bootstrap sample, the significance of the esti-
mated vector of weights was evaluated through the significance 
(P # 0.05) of 1β̂ , which corresponds to the parameter estimate 
for the weighted index. The weighted quantile score was then 
estimated as , where , 
and nB is defined as the number of bootstrap samples in which 

1β̂  was significant. Finally, the significance of WQS was 
assessed using the validation data set and the model

	   
	 (2)

Simultaneous estimation of the unknown weights and 
parameters was achieved through the use of an optimization 
algorithm that maximized the nonlinear function in equa-
tion (1), subject to the linear constraint  and the 
bounds . The nonlinear optimization was performed 
in R using the function solnp found in the package Rsolnp.10 
The algorithm employed belongs to the class of indirect solvers 
and implements the augmented Lagrange multiplier method 
with a sequential quadratic programing interior algorithm.

For each of the 100 simulated data sets for each set of simu-
lation conditions (correlation pattern and outcome correlation), 
we performed WQS regression on the full data set (adjusted for 
study location) and separately at each site. The ranks used in 
WQS regression were calculated within each site for the site-
specific analyses and overall for the site-adjusted analysis of the 
full data set. The process was performed twice, once using the 
continuous outcome variable and once using the binary out-
come variable. Therefore, for each set of conditions, a total of 
five indices (four site-specific indices and one full-study index) 
were estimated for each outcome variable. The median number 
of correctly and incorrectly selected chemicals was calculated 
for each of the five indices across the 100 simulated studies.  
A chemical was identified as selected if it received a weight of 
at least 0.05. The significance of the five estimated indices in 
their respective validation data sets was also examined.

Comparison of WQS regression with lasso, adaptive 
lasso, and elastic net. Modern methods that address collinear-
ity and high-dimensionality (eg, lasso, elastic net) have been 
demonstrated to be less accurate in the selection of potentially 
harmful chemicals compared with WQS regression.5 To fur-
ther assess the use of shrinkage regression models for evaluat-
ing effects of chemical exposures, we fitted lasso,11 adaptive 
lasso,12 and elastic-net13 models to the 100 training data sets 
(of size 500tN = ) for each set of conditions (correlation pat-
tern and outcome association) for both the continuous and 
binary response variables. In an effort to most closely parallel 
the site-adjusted model used in the estimation of WQS weights 
in these overall data sets, indicator variables for site were 
included in the lasso, adaptive lasso, and elastic-net models 
but were not subjected to the penalty (ie, these variables were 
forced to remain in the model). The penalized regressions were 
performed in R using the cv.glmnet and glmnet functions in 
the glmnet package.14 For the lasso and adaptive lasso models, 
the tuning parameters were chosen using cross-validation and 
the one standard error rule.15 For the elastic-net models, a grid 
search was performed using cross-validation, with the elastic-
net mixing parameter allowed to vary from 0 to 1.

For the lasso, adaptive lasso, and elastic-net methods, 
chemicals related to the outcome variable were identified as 
correctly chosen if they were retained in the model with a 
positive coefficient, while chemicals not related to the out-
come variable were identified as incorrectly chosen if they were 
retained in the model. The median and IQR for the number 
of correctly and incorrectly selected chemicals were reported, 
and the three methods were compared in terms of sensitivity 
and specificity.

Results
Sensitivity and specificity of WQS regression. The 

median number of correctly and incorrectly chosen chemicals 
across 100  samples for each setting is displayed in Tables  2 
and 3, respectively. When association with the outcome 
was strong (r = 0.3), the estimated weights for sites Detroit, 
Iowa, and Seattle performed at least as well as the weights 
estimated using the full data set, in terms of both sensitiv-
ity and specificity. Based on the weights for these three sites, 
WQS regression correctly chose all seven chemicals at least 
half of the time (median value) for both the continuous and 

Table 1. Correlations within chemical group by study site and across the full population in the NCI-SEER NHL study.

PCBs PAHs Pesticides/Insecticides

Median Range Median Range Median Range

Detroit 0.76 [0.68, 0.89] 0.98 [0.95, 0.99] 0.20 [−0.09, 0.98]

Iowa 0.76 [0.63, 0.93] 0.92 [0.80, 0.97] 0.17 [−0.07, 0.98]

Los Angeles 0.84 [0.80, 0.95] 0.80 [0.63, 0.91] 0.14 [−0.06, 0.99]

Seattle 0.78 [0.65, 0.95] 0.93 [0.81, 0.97] 0.16 [−0.10, 0.97]

Full 0.79 [0.70, 0.94] 0.94 [0.86, 0.97] 0.14 [−0.12, 0.98]
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binary response variables, regardless of the correlation pattern 
among predictors. The weights estimated from the full-study 
population also correctly chose all seven chemicals at least half 
of the time (median value), with the exception of the setting 
in which the correlation among predictors was the strongest 
(65% of observed site-specific correlations) and the outcome 
was continuous (median of six correctly chosen chemicals). 
With respect to specificity, when outcome correlation was 
strong, the weights for sites Detroit, Iowa, and Seattle and 
the weights for the full-study population had a median value 
of 0 for incorrectly chosen chemicals at all settings. When 
association with the outcome was weak (r = 0.1), the weights 
estimated from the full data set may have slightly improved 
sensitivity, as the median number of correctly chosen chemi-
cals for the overall analysis was often greater by one chemi-
cal (as compared to the median number correctly selected in 
Detroit, Iowa, and Seattle). This one chemical increase in sen-
sitivity was seen across all correlation patterns for the binary 
outcome variable and in the case of moderate correlation (65% 
of that observed) among chemicals for the continuous variable. 
Similarly, the weights estimated from the full data set may 
have slightly increased specificity when outcome association 
was weak, as the site-specific weights tended to incorrectly 
choose one additional chemical.

From the results for the Los Angeles site, all four chemi-
cals were correctly selected at least half of the time for each 
setting, but the number of incorrectly chosen chemicals ranged 
from two to four across the different settings. Because fewer 
chemicals (four) were set to be associated with the outcome 
within this site, it may have been advantageous to define a 
criterion for chemical selection unique to this site.

In summary, WQS regression had good sensitivity and 
specificity at all settings for the site-specific and overall analy-
sis for both the continuous and binary outcome variables. Per-
formance of the site-specific analyses was comparable to that of 
the overall analysis. We caution against overinterpretation of a 

one or two chemical difference in sensitivity and/or specificity, 
as any perceived improved performance for the overall analy-
ses in comparison to the site-specific analyses may be a result 
of the four-fold increase in sample size in the estimation data 
set for the index derived from the full-study population. Fur-
thermore, the results presented in this analysis are dependent 
upon chemical selection as defined by a minimum value of 
0.05 for the estimated chemical weight. It was decided a priori 
that a chemical must receive at least 5% of the weights to be 
considered important. While this may be reasonably applied 
in practice, the method for best choosing a cutoff value is still 
an open area of research. The choice of cutoff value may be 
affected by number of chemicals, correlation structure, signal 
strength, etc.

With respect to chemical selection, we generally expect 
to see an increase in sensitivity and a decrease in specific-
ity as the threshold weight for chemical selection is lowered. 
Figure 4 shows modified receiver operating curves (ROC) for 
the three different correlation structures among the chemi-
cals in the setting of weak association with the (a) continuous 
outcome and (b) binary outcome, with the cutoff weight for 
chemical selection varied. The true positive rate (sensitivity) 
was calculated as the average percentage of correctly selected 
chemicals across the 100  simulations, and the false positive 
rate (1-sensitivity) was calculated as the average percentage of 
incorrectly selected chemicals across the 100 simulations. As 
the cutoff weight for chemical selection is lowered, we see an 
increase in both the average true and false positive rates as 
expected. The a priori chosen cutoff of 0.05 (ie, 5% of the total 
chemical weights) performed well, regardless of the level of 
correlation among chemicals or strength of association with 
outcome. When association with the continuous outcome was 
weak (Fig. 4A), the average false positive rate for the cutoff 
weight of 0.05 ranged from 2.3% to 4.5% across the correlation 
structures, while the average true positive rate ranged from 
83.9% to 85.6%. Similarly, for the binary outcome (Fig. 4B), 

Table 2. Median [IQR] number of correctly chosen chemicals for the five WQS indices across the 100 simulated data sets.

Continuous Outcome Truth Weak Association with Outcome Strong Association with Outcome

k = 0.65 k = 0.30 k = 0.01 k = 0.65 k = 0.30 k = 0.01

WQSDetroit 7 5 [5,6] 6 [5,6] 6 [5,6] 7 [7,7] 7 [7,7] 7 [7,7]

WQSIowa 7 5 [5,6] 6 [5,6] 6 [5,6] 7 [7,7] 7 [7,7] 7 [7,7]

WQSLA 4 4 [3,4] 4 [3,4] 4 [3,5] 4 [4,4] 4 [4,4] 4 [4,4]

WQSSeattle 7 5 [5,6] 6 [5,6] 6 [5,6] 7 [7,7] 7 [7,7] 7 [7,7]

WQSFull 7 6 [5,6] 6 [6,7] 6 [6,6] 6 [6,7] 7 [7,7] 7 [7,7]

Binary Outcome

WQSDetroit 7 5 [4,5] 5 [4,6] 5 [4,6] 7 [6,7] 7 [7,7] 7 [7,7]

WQSIowa 7 5 [4,5] 5 [4,6] 5 [4,6] 7 [7,7] 7 [7,7] 7 [7,7]

WQSLA 4 4 [3,4] 4 [3,4] 4 [3,4] 4 [4,4] 4 [4,4] 4 [4,4]

WQSSeattle 7 5 [4,5] 5 [4,5] 5 [4,5] 7 [6,7] 7 [7,7] 7 [7,7]

WQSFull 7 6 [6,6] 6 [6,7] 6 [6,7] 7 [7,7] 7 [7,7] 7 [7,7]
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the average false positive rate for the cutoff weight of 0.05 
ranged from 2.6% to 6.3% across the correlation structures, 
while the average true positive rate ranged from 85.6% to 
89.9%. Finally, when association with the outcome was strong 
(results not shown), the average false positive rate for the cut-
off weight of 0.05 was at most 0.05%, while the average true 
positive rate was at least 92.6% across the three correlation 
structures and both the continuous and binary outcomes.

Distribution of WQS regression weights. In practice, 
we also look at the distributions of the weights in deciding 
which chemicals are important. Figure 5 shows the distribu-
tion of the average weights across the 100 simulated samples 
for the seven chemicals assumed to be associated with out-
come for each of the five indices. The plots focus on the set-
ting in which there was weak correlation with the continuous 
outcome for (A) moderate correlation (65% of that observed) 
among chemicals and (B) correlation diminished to 1% of that 
observed. For both correlation structures, WQS appropriately 
placed considerable weight on the true bad actors and also 
placed negligible weight on chemicals uncorrelated with the 
outcome. The latter is demonstrated by the near zero weight 
placed on X8, X9, and X19 by the Los Angeles index. Also, as 
correlation among chemicals was diminished, reliability of the 
weights improved, as evident by the narrowed distributions in 
Figure 5(B).

When comparing the weights from the different indices, 
the index for Los Angeles tended to place greater emphasis on 
chemicals X5, X20, X24, and X27 compared with the other 
sites. This is likely because of the fact that these four chemicals 
were the only true bad actors in this site, and thus, the weights 
as a whole were divided over fewer components. Addition-
ally, the weights for the full-study population analysis seem to 
demonstrate an averaging effect across the sites, as they appear 

to shift downward for the chemicals that were unassociated 
with outcome in Los Angeles (X8, X9, and X19). For the 
chemicals associated with outcome in all four sites (X5, X20, 
X24, and X27), the weights estimated by the overall analysis 
were slightly higher than those estimated in site-specific ana
lysis. This may be attributable to the increased power (greater 
sample size) of the overall analysis.

When strongly correlated with the continuous outcome 
(data not shown), the findings were consistent with those dis-
cussed above, but the important chemicals (true bad actors) 
tended to receive higher average weights. With respect to the 
binary outcome (data not shown), the findings were again 
analogous.

Power of WQS regression. The estimated weights 
were applied to the validation data sets, and significance was 
assessed through the 1β̂  parameter. The results of the signifi
cance tests across the simulated data sets are summarized 
in Tables 4 and 5. The average parameter estimates were all 
positively associated with outcome, suggesting that increased 
body burden (as estimated by the WQS index) was associated 
with increased risk. Overall power increased, as expected, as 
the association with the outcome variable strengthened and 
correlation among chemicals diminished. Additionally, the 
indices estimated using the continuous outcome variable had 
greater power in comparison to those using the binary out-
come variable. Finally, the indices for the Los Angeles site 
exhibited lower power in comparison to the other indices. 
This is likely because the set of predictor variables as a whole 
was contributing less information, as fewer chemicals were 
set to be associated with the outcome. This became more pro-
nounced, again as expected, when correlation among chemi-
cals strengthened and association with the outcome was 
weakened.
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Figure 4. Modified ROC for the WQS index derived from the full-study population with varying weight thresholds for chemical selection for a continuous 
outcome (A) and a binary outcome (B). The true positive rate was calculated as the average percentage of correctly selected chemicals (ie, the average 
number of correctly selected chemicals divided by 7) over the 100 simulations, while the false positive rate was calculated as the average percentage of 
incorrectly selected chemicals (ie, the average number of incorrectly selected chemicals divided by 20). The points on each line represent (from left to 
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chemicals (ie, the amount by which the observed chemical correlations was diminished).
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Comparison of WQS regression with lasso, adaptive 
lasso, and elastic net regression. Lasso, adaptive lasso, and 
elastic-net regressions were performed on only the full-study 
population for both the binary and continuous outcomes for 
the six different simulation settings. The median number of 
correctly and incorrectly chosen chemicals for the lasso, adap-
tive lasso, elastic-net, and WQS regression models across 
100 samples is given in Tables 6 and 7. When the predictors 
were strongly associated with the outcome, WQS and the tra-
ditional shrinkage methods demonstrated a high degree of 
sensitivity for both the continuous and binary response vari-
ables, regardless of the level of correlation among predictors. 
For the continuous outcome, each of the shrinkage methods 

correctly selected all seven chemicals at least half of the time, 
while WQS regression correctly selected a median of at least 
six of the seven chemicals. In the case of the binary outcome, 
each of the methods correctly chose all seven chemicals at 
least half of the time.

When considering the setting of weak association among 
the predictors and the outcome, WQS regression correctly 
selected six of the seven chemicals at least half of the time, for 
both the continuous and binary outcomes, regardless of the 
level of correlation among the predictors. Similarly, the median 
number of correctly chosen chemicals for elastic net ranged 
between six and seven for both the continuous and binary 
responses. In contrast, lasso and adaptive lasso demonstrated 
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Figure 5. Distribution of WQS index weights for the five WQS indices across the 100 simulated data sets for the seven chemicals associated with the 
outcome. Site 1 = Detroit, 2 = Iowa, 3 = Los Angeles, 4 = Seattle, and F = full-study population. (A) Continuous outcome (r = 0.1). Correlation among 
chemicals diminished to 65% of the observed site-specific correlation structures. (B) Continuous outcome (r = 0.1). Correlation among chemicals 
diminished to 1% of the observed site-specific correlation structures.
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Table 3. Median [IQR] number of incorrectly chosen chemicals for the five WQS indices across the 100 simulated data sets.

Continuous Outcome Max Weak Association with Outcome Strong Association with Outcome

k = 0.65 k = 0.30 k = 0.01 k = 0.65 k = 0.30 k = 0.01

WQSDetroit 20 1 [0,2] 1 [1,2] 2 [1,3] 0 [0,0] 0 [0,0] 0 [0,0]

WQSIowa 20 1 [.75,2] 2 [1,2] 2 [1,3] 0 [0,0] 0 [0,0] 0 [0,0]

WQSLA 23 2 [1,3] 3 [2,3] 3 [2,4] 0 [0,0] 0 [0,0] 0 [0,0]

WQSSeattle 20 1 [0,2] 1 [1,2] 2 [1,2] 0 [0,0] 0 [0,0] 0 [0,0]

WQSFull 20 0 [0,1] 0 [0,1] 1 [0,1] 0 [0,0] 0 [0,0] 0 [0,0]

Binary Outcome

WQSDetroit 20 2 [1,2] 2 [1,3] 3 [2,4] 0 [0,0] 0 [0,0] 0 [0,0]

WQSIowa 20 2 [1,3] 2 [1,3] 3 [2,3] 0 [0,0] 0 [0,0] 0 [0,0]

WQSLA 23 3 [2,3] 3.5 [2,4] 4 [3,5] 0 [0,0] 0 [0,1] 1 [0,1]

WQSSeattle 20 2 [1,3] 2 [2,3] 3 [2,4] 0 [0,0] 0 [0,0] 0 [0,0]

WQSFull 20 0 [0,1] 1 [0,1] 1 [1,2] 0 [0,0] 0 [0,0] 0 [0,0]
 

diminished sensitivity, with the median number of correctly 
chosen chemicals ranging from four to seven for the continu-
ous outcome and three to five for the binary outcome.

While the penalized regression models may have exhib-
ited sensitivity that was comparable to that of WQS regression 
in several settings, the sensitivity of these traditional shrinkage 
methods was often overshadowed by their lack of specificity.  
WQS regression was highly specific, choosing at most a 
median of one incorrect chemical, regardless of the degree of 

correlation among predictors and regardless of the strength 
of association with the response. In contrast, as correlation 
among the chemicals increased, the penalized regression 
methods demonstrated a loss of specificity. In particular, when 
the predictors were strongly associated with the response (both 
continuous and binary), the penalized regression models chose 
a median of at least 14 incorrect chemicals in the presence of 
moderate or mild correlation among chemicals. Most notably, 
the lasso and elastic net had a tendency to select almost all 

Table 4. Summary of testing results for the five WQS indices across the 100 simulated data sets for the continuous outcome variable.

Weak Association with Outcome Strong Association with Outcome

1β̂ 95% Confidence Interval % SIG.
1β̂ 95% Confidence Interval % SIG.

k = 0.65

WQSDetroit 0.27 (0.11, 0.44) 91 1.00 (0.87, 1.13) 100

WQSIowa 0.29 (0.12, 0.46) 89 1.07 (0.94, 1.21) 100

WQSLA 0.18 (0.00, 0.35) 58 0.69 (0.55, 0.83) 100

WQSSeattle 0.31 (0.13, 0.50) 96 1.07 (0.93, 1.21) 100

WQSFull 0.30 (0.20, 0.40) 100 0.94 (0.87, 1.02) 100

k = 0.30

WQSDetroit 0.39 (0.18, 0.60) 96 1.31 (1.16, 1.45) 100

WQSIowa 0.40 (0.18, 0.61) 99 1.35 (1.19, 1.51) 100

WQSLA 0.26 (0.06, 0.45) 75 0.87 (0.74, 1.00) 100

WQSSeattle 0.41 (0.15, 0.66) 94 1.35 (1.20, 1.50) 100

WQSFull 0.40 (0.29, 0.51) 100 1.19 (1.11, 1.27) 100

k = 0.01

WQSDetroit 0.64 (0.32, 0.96) 99 1.91 (1.72, 2.11) 100

WQSIowa 0.62 (0.28, 0.97) 97 1.94 (1.74, 2.14) 100

WQSLA 0.44 (0.17, 0.70) 87 1.28 (1.05, 1.51) 100

WQSSeattle 0.66 (0.37, 0.96) 100 1.92 (1.74, 2.10) 100

WQSFull 0.58 (0.45, 0.72) 100 1.64 (1.51, 1.76) 100

Notes: 1β̂ is given as the average across 100 simulated data sets and % sig. denotes the % of data sets in which 1β̂ was significant.
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the chemicals when the chemicals were moderately correlated 
and strongly associated with the response. The relatively low 
specificity of these shrinkage methods appears to limit their 
role in risk evaluation of environmental chemical mixtures.

Discussion and Conclusion
WQS regression demonstrated good sensitivity and specific-
ity for both site-specific models and the full-study population 
models across a variety of conditions considered in this study. 
WQS adequately detected important predictors, while simul-
taneously placing negligible weight on chemicals unassociated 

with outcome, for both continuous and binary response vari-
ables. Additionally, the WQS index was significantly and 
positively associated with the outcome when tested in the 
validation data sets, and generally demonstrated good power. 
Results improved as correlation among chemicals diminished 
and association with the outcome strengthened. In compari-
son to the shrinkage regression methods of lasso and elas-
tic net, WQS performed well for sensitivity and specificity, 
while the lasso and elastic-net models exhibited good sensi-
tivity but poor specificity. The shrinkage methods had a ten-
dency to incorrectly identify a large number of components, 

Table 6. Median [IQR] number of correctly selected chemicals for lasso, adaptive lasso, elastic-net, and WQs regressions across the 100 
simulated data sets for the full-study population.

Continuous Outcome Weak Association with Outcome Strong Association with Outcome 

k = 0.65 k = 0.30 k = 0.01 k = 0.65 k = 0.30 k = 0.01

Lasso 7 [6,7] 4 [3,6] 5 [4,6] 7 [7,7] 7 [7,7] 7 [7,7]

Adaptive Lasso 6 [6,7] 4 [3,5] 5 [4,6] 7 [7,7] 7 [7,7] 7 [7,7]

Elastic Net 7 [6,7] 6 [5,7] 6 [5,7] 7 [7,7] 7 [7,7] 7 [7,7]

WQSFull 6 [5,6] 6 [6,7] 6 [6,6] 6 [6,7] 7 [7,7] 7 [7,7]

Binary Outcome

Lasso 5 [3,6] 3 [0,5] 3 [0,5] 7 [7,7] 7 [7,7] 7 [7,7]

Adaptive Lasso 5 [4,6] 3 [1,5] 3 [2,5] 7 [7,7] 7 [7,7] 7 [7,7]

Elastic Net 7 [6,7] 7 [5.75,7] 6 [4,7] 7 [7,7] 7 [7,7] 7 [7,7]

WQSFull 6 [6,6] 6 [6,7] 6 [6,7] 7 [7,7] 7 [7,7] 7 [7,7]

Table 5. Summary of testing results for the five WQS indices across the 100 simulated data sets for the binary outcome variable.

Weak Association with Outcome Strong Association with Outcome

1β̂ 95% Confidence Interval % SIG.
1β̂ 95% Confidence Interval % SIG.

k = 0.65

WQSDetroit 0.43 (0.07, 0.78) 61 2.00 (1.47, 2.53) 100

WQSIowa 0.45 (0.01, 0.89) 61 2.18 (1.70, 2.66) 100

WQSLA 0.25 (−0.14, 0.65) 28 1.28 (0.91, 1.64) 100

WQSSeattle 0.48 (0.06, 0.89) 67 2.16 (1.65, 2.66) 100

WQSFull 0.51 (0.31, 0.72) 100 1.99 (1.73, 2.26) 100

k = 0.30

WQSDetroit 0.65 (0.19, 1.10) 84 2.81 (2.11, 3.52) 100

WQSIowa 0.64 (0.10, 1.17) 74 2.97 (2.34, 3.60) 100

WQSLA 0.35 (−0.08, 0.78) 31 1.70 (1.26, 2.14) 100

WQSSeattle 0.62 (0.08, 1.17) 74 2.97 (2.32, 3.62) 100

WQSFull 0.70 (0.45, 0.95) 100 2.67 (2.39, 2.96) 100

k = 0.01

WQSDetroit 1.00 (0.29, 1.71) 84 4.82 (3.92, 5.72) 100

WQSIowa 0.97 (0.26, 1.67) 82 4.93 (3.95, 5.91) 100

WQSLA 0.68 (0.09, 1.27) 61 2.67 (1.95, 3.38) 100

WQSSeattle 1.03 (0.39, 1.67) 90 4.95 (3.95, 5.96) 100

WQSFull 1.10 (0.77, 1.43) 100 4.21 (3.70, 4.72) 100

Notes: 1β̂ is given as the average across 100 simulated data sets and % sig. denotes the % of simulated examples in which 1β̂ was significant.
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especially in the case of strong association with the outcome. 
This suggests that these methods may be limited for use in risk 
assessment, as they are unable to discern which chemicals are 
unassociated with health risk.

The WQS index weights for the full-study population 
demonstrated an averaging effect, suggesting that chemi-
cal weights estimated in an overall analysis may not be 
representative of the true bad actors within a site. Three 
chemicals were deemed unassociated with outcome in the 
Los Angeles site, as they were not present in high enough 
concentrations to satisfy the imposed definition of health 
risk. The overall analysis consistently identified these three 
chemicals unassociated with outcome in Los Angeles as 
bad actors. While this is representative of the data as a 
whole (these chemicals were set as truly bad actors in three 
of the four sites), it is not an accurate representation of the 
chemicals posing risk in Los Angeles. Additionally, the 
average weights assigned to these three chemicals by the 
index in the full-study population were lower in compari-
son to the weights assigned by the indices in Detroit, Iowa, 
and Seattle. The non-association in Los Angeles, therefore, 
seems to result in an underestimation (by the full index) of 
the importance of these chemicals in the sites in which they 
truly were bad actors.

With the goal of identifying chemicals that pose a sig-
nificant health risk, it is of great importance to consider the 
toxicological principle that “the dose makes the poison,” 
especially given that exposure patterns are spatially vary-
ing. Although a chemical may not be present in high enough 
concentrations to pose a health risk in one location, it may 
still pose a significant health risk at other locations. Though 
limited, these simulation studies suggest that use of an over-
all index may overstate the importance of a chemical in sites 
where the concentration is too low to constitute risk and may 
understate the importance of a chemical in locations where it 
is present in concentrations that are high enough to adversely 
affect health.

Table 7. Median [IQR] number of incorrectly selected chemicals for lasso, adaptive lasso, elastic net, and WQs regressions across the 100 
simulated data sets for the full-study population.

Continuous Outcome Weak Association with Outcome Strong Association with Outcome

k = 0.65 k = 0.30 k = 0.01 k = 0.65 k = 0.30 k = 0.01

Lasso 7 [4,10] 0 [0,0.25] 0 [0,0] 20 [19,20] 18 [17,19] 0 [0,0]

Adaptive Lasso 4 [2.75,6] 0 [0,0] 0 [0,0] 17 [17,18] 14 [13,16] 0 [0,0]

Elastic Net 8 [5,11] 0.5 [0,5] 0 [0,1] 20 [19,20] 18.5 [18,19] 0 [0,0.25]

WQSFull 0 [0,1] 0 [0,1] 1 [0,1] 0 [0,0] 0 [0,0] 0 [0,0]

Binary Outcome

Lasso 2 [0,7] 0 [0,0] 0 [0,0] 19 [19,20] 16 [15,17] 0 [0,1]

Adaptive Lasso 2 [1,4] 0 [0,0] 0 [0,0] 16 [15,16.25] 11 [9,13] 0 [0,0]

Elastic Net 10 [5,20] 5 [0,20] 0.5 [0,20] 19 [19,20] 18 [16,19] 1 [0,2]

WQSFull 0 [0,1] 1 [0,1] 1 [1,2] 0 [0,0] 0 [0,0] 0 [0,0]
 

The simulation studies conducted in this analysis were 
largely reflective of the exposure patterns observed in the 
original NCI-SEER NHL study, incorporating the exposure 
concentrations and the complex correlation among chemicals 
on a site-specific basis. However, simulation of the data uti-
lized Cholesky decomposition, which required that the covari-
ance matrices be positive definite. As a result, the simulations 
only incorporated (at most) 65% of the observed correlation 
structures, as the covariance matrices became singular if they 
were any less diminished. Other studies have used methods 
such as ridging to allow the correlation to be persevered or 
even inflated,16 which should be considered in future work. 
We expect that as correlation among chemicals increases, 
one will encounter cases in which WQS may not perform as 
well as was in this study. Finally, in the general context of 
risk assessment, it is a limitation that the observed chemical 
concentrations in the NCI-SEER NHL study were external 
measures of exposures, as what is found in house dust may not 
be truly reflective of an individual’s absorption or ingestion of 
chemicals.
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