109 research outputs found

    Next-generation HLA typing of 382 International Histocompatibility Working Group reference B-lymphoblastoid cell lines: Report from the 17th International HLA and Immunogenetics Workshop

    Get PDF
    Extended molecular characterization of HLA genes in the IHWG reference B-lymphoblastoid cell lines (B-LCLs) was one of the major goals for the 17th International HLA and Immunogenetics Workshop (IHIW). Although reference B-LCLs have been examined extensively in previous workshops complete high-resolution typing was not completed for all the classical class I and class II HLA genes. To address this, we conducted a single-blind study where select panels of B-LCL genomic DNA samples were distributed to multiple laboratories for HLA genotyping by next-generation sequencing methods. Identical cell panels comprised of 24 and 346 samples were distributed and typed by at least four laboratories in order to derive accurate consensus HLA genotypes. Overall concordance rates calculated at both 2- and 4-field allele-level resolutions ranged from 90.4% to 100%. Concordance for the class I genes ranged from 91.7 to 100%, whereas concordance for class II genes was variable; the lowest observed at HLA-DRB3 (84.2%). At the maximum allele-resolution 78 B-LCLs were defined as homozygous for all 11 loci. We identified 11 novel exon polymorphisms in the entire cell panel. A comparison of the B-LCLs NGS HLA genotypes with the HLA genotypes catalogued in the IPD-IMGT/HLA Database Cell Repository, revealed an overall allele match at 68.4%. Typing discrepancies between the two datasets were mostly due to the lower-resolution historical typing methods resulting in incomplete HLA genotypes for some samples listed in the IPD-IMGT/HLA Database Cell Repository. Our approach of multiple-laboratory NGS HLA typing of the B-LCLs has provided accurate genotyping data. The data generated by the tremendous collaborative efforts of the 17th IHIW participants is useful for updating the current cell and sequence databases and will be a valuable resource for future studies

    Different Patterns of Evolution in the Centromeric and Telomeric Regions of Group A and B Haplotypes of the Human Killer Cell Ig-Like Receptor Locus

    Get PDF
    The fast evolving human KIR gene family encodes variable lymphocyte receptors specific for polymorphic HLA class I determinants. Nucleotide sequences for 24 representative human KIR haplotypes were determined. With three previously defined haplotypes, this gave a set of 12 group A and 15 group B haplotypes for assessment of KIR variation. The seven gene-content haplotypes are all combinations of four centromeric and two telomeric motifs. 2DL5, 2DS5 and 2DS3 can be present in centromeric and telomeric locations. With one exception, haplotypes having identical gene content differed in their combinations of KIR alleles. Sequence diversity varied between haplotype groups and between centromeric and telomeric halves of the KIR locus. The most variable A haplotype genes are in the telomeric half, whereas the most variable genes characterizing B haplotypes are in the centromeric half. Of the highly polymorphic genes, only the 3DL3 framework gene exhibits a similar diversity when carried by A and B haplotypes. Phylogenetic analysis and divergence time estimates, point to the centromeric gene-content motifs that distinguish A and B haplotypes having emerged ∼6 million years ago, contemporaneously with the separation of human and chimpanzee ancestors. In contrast, the telomeric motifs that distinguish A and B haplotypes emerged more recently, ∼1.7 million years ago, before the emergence of Homo sapiens. Thus the centromeric and telomeric motifs that typify A and B haplotypes have likely been present throughout human evolution. The results suggest the common ancestor of A and B haplotypes combined a B-like centromeric region with an A-like telomeric region

    Human-Specific Evolution and Adaptation Led to Major Qualitative Differences in the Variable Receptors of Human and Chimpanzee Natural Killer Cells

    Get PDF
    Natural killer (NK) cells serve essential functions in immunity and reproduction. Diversifying these functions within individuals and populations are rapidly-evolving interactions between highly polymorphic major histocompatibility complex (MHC) class I ligands and variable NK cell receptors. Specific to simian primates is the family of Killer cell Immunoglobulin-like Receptors (KIR), which recognize MHC class I and associate with a range of human diseases. Because KIR have considerable species-specificity and are lacking from common animal models, we performed extensive comparison of the systems of KIR and MHC class I interaction in humans and chimpanzees. Although of similar complexity, they differ in genomic organization, gene content, and diversification mechanisms, mainly because of human-specific specialization in the KIR that recognizes the C1 and C2 epitopes of MHC-B and -C. Humans uniquely focused KIR recognition on MHC-C, while losing C1-bearing MHC-B. Reversing this trend, C1-bearing HLA-B46 was recently driven to unprecedented high frequency in Southeast Asia. Chimpanzees have a variety of ancient, avid, and predominantly inhibitory receptors, whereas human receptors are fewer, recently evolved, and combine avid inhibitory receptors with attenuated activating receptors. These differences accompany human-specific evolution of the A and B haplotypes that are under balancing selection and differentially function in defense and reproduction. Our study shows how the qualitative differences that distinguish the human and chimpanzee systems of KIR and MHC class I predominantly derive from adaptations on the human line in response to selective pressures placed on human NK cells by the competing needs of defense and reproduction

    Co-evolution of NK receptors and HLA ligands in humans is driven by reproduction.

    Get PDF
    Allogeneic individuals co-exist during pregnancy in eutherian mammals. Maternal and fetal cells intermingle at the site of placental attachment in the uterus, where the arteries are remodeled to supply the fetus with oxygen and nutrients. This access by placental cells to the maternal supply line determines the growth and birth weight of the baby and is subject to stabilizing selection. Invading placental trophoblast cells express human leukocyte antigen class I ligands (HLA-E, HLA-G, and HLA-C) for receptors on maternal uterine natural killer (NK) and myelomonocytic cells, CD94/NKG2, leukocyte immunoglobulin-like receptor (LILR), and killer immunoglobulin receptor (KIR). Of these, only the KIR/HLA-C system is highly polymorphic. Different combinations of maternal KIR and fetal HLA-C variants are correlated with low birth weight and pre-eclampsia or high birth weight and obstructed labor, the two extremes of the obstetric dilemma. This situation has arisen because of the evolution of bipedalism and subsequently, in the last million years, larger brains. At this point, the human system began to reach a balance between KIR A and KIR B haplotypes and C1 and C2 epitopes of HLA-C alleles that reflects a functional compromise between the competing demands of immunity and reproduction.We are grateful for financial support from Centre for Trophoblast Research, University of Cambridge, King's College, Cambridge, and the Wellcome Trust.This is the author accepted manuscript. The final version is available from Wiley via http://dx.doi.org/10.1111/imr.1232

    KIR gene content diversity in four Iranian populations

    Get PDF
    Killer cell immunoglobulin-like receptors (KIR) regulate natural killer cell response against infection and malignancy. KIR genes are variable in the number and type, thereby discriminating individuals and populations. Herein, we analyzed the KIR gene content diversity in four native populations of Iran. The KIR genomic diversity was comparable between Bakhtiari and Persian and displayed a balance of A and B KIR haplotypes, a trend reported in Caucasian and African populations. The KIR gene content profiles of Arab and Azeri were comparable and displayed a preponderance of B haplotypes, a scenario reported in the natives of America, India, and Australia. A majority of the B haplotype carriers of Azeri and Arab had a centromeric gene-cluster (KIR2DS2-2DL2-2DS3-2DL5). Remarkably, this cluster was totally absent from the American natives but occurred at highest frequencies in the natives of India and Australia in combination with another gene cluster at the telomeric region (KIR3DS1-2DL5-2DS5-2DS1). Therefore, despite having similar frequencies of B haplotypes, the occurrence of B haplotype-specific KIR genes, such as 2DL2, 2DL5, 3DS1, 2DS1, 2DS2, 2DS3, and 2DS5 in Azeri and Arab were substantially different from the natives of America, India, and Australia. In conclusion, each Iranian population exhibits distinct KIR gene content diversity, and the Indo-European KIR genetic signatures of the Iranians concur with geographic proximity, linguistic affinity, and human migrations

    A bird's eye view of NK cell receptor interactions with their MHC class I ligands

    Get PDF
    The surveillance of target cells by natural killer (NK) cells utilizes an ensemble of inhibitory and activating receptors, many of which interact with major histocompatibility complex (MHC) class I molecules. NK cell recognition of MHC class I proteins is important developmentally for the acquisition of full NK cell effector capacity and during target cell recognition, where the engagement of inhibitory receptors and MHC class I molecules attenuates NK cell activation. Human NK cells have evolved two broad strategies for recognition of human leukocyte antigen (HLA) class I molecules: (i) direct recognition of polymorphic classical HLA class I proteins by diverse receptor families such as the killer cell immunoglobulin‐like receptors (KIRs), and (ii) indirect recognition of conserved sets of HLA class I‐derived peptides displayed on the non‐classical HLA‐E for recognition by CD94‐NKG2 receptors. In this review, we assess the structural basis for the interaction between these NK receptors and their HLA class I ligands and, using the suite of published KIR and CD94‐NKG2 ternary complexes, highlight the features that allow NK cells to orchestrate the recognition of a range of different HLA class I proteins

    Killer Ig-like receptor (KIR) genotype predicts the capacity of human KIR-positive CD56dim NK cells to respond to pathogen-associated signals.

    No full text
    IFN-gamma emanating from NK cells is an important component of innate defense against infection. In this study, we demonstrate that, following in vitro stimulation of human peripheral blood NK cells with a variety of microbial ligands, CD56(dim) as well as CD56(bright) NK cells contribute to the overall NK cell IFN-gamma response with, for most cell donors, IFN-gamma(+) CD56(dim) NK cells outnumbering IFN-gamma(+) CD56(bright) NK cells. We also observe that the magnitude of the human NK IFN-gamma response to microbial ligands varies between individuals; that the antimicrobial response of CD56(bright), but not CD56(dim), NK cells is highly correlated with that of myeloid accessory cells; and that the ratio of IFN-gamma(+) CD56(dim) to IFN-gamma(+) CD56(bright) NK cells following microbial stimulation differs between individuals but remains constant for a given donor over time. Furthermore, ratios of IFN-gamma(+) CD56(dim) to IFN-gamma(+) CD56(bright) NK cells for different microbial stimuli are highly correlated and the relative response of CD56(dim) and CD56(bright) NK cells is highly significantly associated with killer Ig-like receptor (KIR) genotype. These data reveal an influence of KIR genotype, possibly mediated via NK cell education, on the ability of NK cells to respond to nonviral infections and have implications for genetic regulation of susceptibility to infection in humans
    • …
    corecore