145 research outputs found

    Genomics-Based Insights Into the Biosynthesis and Unusually High Accumulation of Free Fatty Acids by Streptomyces sp NP10

    Get PDF
    Schneider O, Ilic-Tomic T, RĂŒckert C, et al. Genomics-Based Insights Into the Biosynthesis and Unusually High Accumulation of Free Fatty Acids by Streptomyces sp NP10. FRONTIERS IN MICROBIOLOGY. 2018;9: 10.Streptomyces sp. NP10 was previously shown to synthesize large amounts of free fatty acids (FFAs). In this work, we report the first insights into the biosynthesis of these fatty acids (FAs) gained after genome sequencing and identification of the genes involved. Analysis of the Streptomyces sp. NP10 draft genome revealed that it is closely related to several strains of Streptomyces griseus. Comparative analyses of secondary metabolite biosynthetic gene clusters, as well as those presumably involved in FA biosynthesis, allowed identification of an unusual cluster C12-2, which could be identified in only one other S. griseus-related streptomycete. To prove the involvement of identified cluster in FFA biosynthesis, one of its three ketosynthase genes was insertionally inactivated to generate mutant strain mNP10. Accumulation of FFAs in mNP10 was almost completely abolished, reaching less than 0.01% compared to the wild-type strain. Cloning and transfer of the C12-2 cluster to the mNP10 mutant partially restored FFA production, albeit to a low level. The discovery of this rare FFA biosynthesis cluster opens possibilities for detailed characterization of the roles of individual genes and their products in the biosynthesis of FFAs in NP10

    Cobalamin-Independent Methionine Synthase (MetE): A Face-to-Face Double Barrel That Evolved by Gene Duplication

    Get PDF
    Cobalamin-independent methionine synthase (MetE) catalyzes the transfer of a methyl group from methyltetrahydrofolate to L-homocysteine (Hcy) without using an intermediate methyl carrier. Although MetE displays no detectable sequence homology with cobalamin-dependent methionine synthase (MetH), both enzymes require zinc for activation and binding of Hcy. Crystallographic analyses of MetE from T. maritima reveal an unusual dual-barrel structure in which the active site lies between the tops of the two (ÎČα)(8) barrels. The fold of the N-terminal barrel confirms that it has evolved from the C-terminal polypeptide by gene duplication; comparisons of the barrels provide an intriguing example of homologous domain evolution in which binding sites are obliterated. The C-terminal barrel incorporates the zinc ion that binds and activates Hcy. The zinc-binding site in MetE is distinguished from the (Cys)(3)Zn site in the related enzymes, MetH and betaine–homocysteine methyltransferase, by its position in the barrel and by the metal ligands, which are histidine, cysteine, glutamate, and cysteine in the resting form of MetE. Hcy associates at the face of the metal opposite glutamate, which moves away from the zinc in the binary E·Hcy complex. The folate substrate is not intimately associated with the N-terminal barrel; instead, elements from both barrels contribute binding determinants in a binary complex in which the folate substrate is incorrectly oriented for methyl transfer. Atypical locations of the Hcy and folate sites in the C-terminal barrel presumably permit direct interaction of the substrates in a ternary complex. Structures of the binary substrate complexes imply that rearrangement of folate, perhaps accompanied by domain rearrangement, must occur before formation of a ternary complex that is competent for methyl transfer

    The complete genome sequence of Moorella thermoacetica (f. Clostridium thermoaceticum )

    Full text link
    This paper describes the genome sequence of Moorella thermoacetica (f. Clostridium thermoaceticum ), which is the model acetogenic bacterium that has been widely used for elucidating the Wood–Ljungdahl pathway of CO and CO 2 fixation. This pathway, which is also known as the reductive acetyl-CoA pathway, allows acetogenic (often called homoacetogenic) bacteria to convert glucose stoichiometrically into 3 mol of acetate and to grow autotrophically using H 2 and CO as electron donors and CO 2 as an electron acceptor. Methanogenic archaea use this pathway in reverse to grow by converting acetate into methane and CO 2 . Acetogenic bacteria also couple the Wood–Ljungdahl pathway to a variety of other pathways to allow the metabolism of a wide variety of carbon sources and electron donors (sugars, carboxylic acids, alcohols and aromatic compounds) and electron acceptors (CO 2 , nitrate, nitrite, thiosulfate, dimethylsulfoxide and aromatic carboxyl groups). The genome consists of a single circular 2 628 784 bp chromosome encoding 2615 open reading frames (ORFs), which includes 2523 predicted protein-encoding genes. Of these, 1834 genes (70.13%) have been assigned tentative functions, 665 (25.43%) matched genes of unknown function, and the remaining 24 (0.92%) had no database match. A total of 2384 (91.17%) of the ORFs in the M. thermoacetica genome can be grouped in orthologue clusters. This first genome sequence of an acetogenic bacterium provides important information related to how acetogens engage their extreme metabolic diversity by switching among different carbon substrates and electron donors/acceptors and how they conserve energy by anaerobic respiration. Our genome analysis indicates that the key genetic trait for homoacetogenesis is the core acs gene cluster of the Wood–Ljungdahl pathway.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/75588/1/j.1462-2920.2008.01679.x.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/75588/2/EMI_1679_sm_Table_S1-S7_and_Figure_S1-S7.pd

    Mutation of the proteolipid protein gene PLP in a human X chromosome-linked myelin disorder.

    Get PDF
    Myelin is a highly specialized membrane unique to the nervous system that ensheaths axons to permit the rapid saltatory conduction of impulses. The elaboration of a compact myelin sheath is disrupted in a diverse spectrum of human disorders, many of which are of unknown etiology. The X chromosome-linked human disorder Pelizaeus-Merzbacher disease is a clinically and pathologically heterogeneous group of disorders that demonstrate a striking failure of oligodendrocyte differentiation. This disease appears pathologically and genetically to be similar to the disorder seen in the dysmyelinating mouse mutant jimpy, which has a point mutation in the gene encoding an abundant myelin protein, proteolipid protein (PLP). We report that the molecular defect in one Pelizaeus-Merzbacher family is likewise a point mutation in the PLP gene. A single T----C transition results in the substitution of a charged amino acid residue, arginine, for tryptophan in one of the four extremely hydrophobic domains of the PLP protein. The identification of a mutation in this Pelizaeus-Merzbacher family should facilitate the molecular classification and diagnosis of these X chromosome-linked human dysmyelinating disorders
    • 

    corecore