172 research outputs found

    Web Home Page Complexity and Communication Effectiveness

    Get PDF
    To date, little research has been conducted to explore how consumers perceive and use the Web as an advertising medium. Although numerous guidelines for Web home page design exist, the vast majority of advice is based on opinion, personal experience or observation, not necessarily on empirical evidence. A combination of research methods (focus groups, interviews, and experiments) is used to identify design elements that influence consumers\u27 perceptions of Web page complexity. The study reports that perceived complexity is a result of four major factors: number of links, number of graphics, home page length, and animation. Also, we find evidence that Web page complexity is related to communication effectiveness. The managerial implications are discussed

    Final design of a space debris removal system

    Get PDF
    The objective is the removal of medium sized orbital debris in low Earth orbits. The design incorporates a transfer vehicle and a netting vehicle to capture the medium size debris. The system is based near an operational space station located at 28.5 degrees inclination and 400 km altitude. The system uses ground based tracking to determine the location of a satellite breakup or debris cloud. This data is unloaded to the transfer vehicle, and the transfer vehicle proceeds to rendezvous with the debris at a lower altitude parking orbit. Next, the netting vehicle is deployed, tracks the targeted debris, and captures it. After expending the available nets, the netting vehicle returns to the transfer vehicle for a new netting module and continues to capture more debris in the target area. Once all the netting modules are expended, the transfer vehicle returns to the space station's orbit, where it is resupplied with new netting modules from a space shuttle load. The new modules are launched by the shuttle from the ground, and the expended modules are taken back to Earth for removal of the captured debris, refueling, and repacking of the nets. Once the netting modules are refurbished, they are taken back into orbit for reuse. In a typical mission, the system has the ability to capture 50 pieces of orbital debris. One mission will take about six months. The system is designed to allow for a 30 degree inclination change on the outgoing and incoming trips of the transfer vehicle

    Iron bioavailability: UK Food Standards Agency workshop report

    Get PDF
    The UK Food Standards Agency convened a group of expert scientists to review current research investigating factors affecting iron status and the bioavailability of dietary iron. Results presented at the workshop show menstrual blood loss to be the major determinant of body iron stores in premenopausal women. In the presence of abundant and varied food supplies, the health consequences of lower iron bioavailability are unclear and require further investigatio

    The effects of dissolved halide anions on hydrogen bonding in liquid water

    Get PDF
    Abstract: It is widely believed that the addition of salts to water engenders structural changes in the hydrogen-bond network well beyond the adjacent shell of solvating molecules. Classification of many ions as "structure makers" and "structure breakers" has been based in part on corresponding changes in the vibrational spectra (Raman and IR). Here we show that changes in O-H vibrational spectra induced by the alkali halides in liquid water result instead from the actions of ions' electric fields on adjacent water molecules. Computer simulations that accurately reproduce our experimental measurements suggest that the statistics of hydrogen-bond strengths are only weakly modified beyond this first solvation shell

    Interleukin-17A upregulates receptor activator of NF-κB on osteoclast precursors

    Get PDF
    IntroductionThe interaction between the immune and skeletal systems is evidenced by the bone loss observed in autoimmune diseases such as rheumatoid arthritis. In this paper we describe a new mechanism by which the immune cytokine IL-17A directly affects osteoclastogenesis.MethodsHuman CD14+ cells were isolated from healthy donors, cultured on dentine slices and coverslips and stimulated with IL-17A and/or receptor activator of NF-kappaB ligand (RANKL). Osteoclast differentiation was evaluated by gene expression, flow cytometry, tartrate-resistant acid phosphatase staining, fluorescence and electron microscopy. Physiologic bone remodelling was studied in wild-type (Wt) and IL-17A-/- mice using micro-computer tomography and serum RANKL/osteoprotegerin concentration. Functional osteoclastogenesis assays were performed using bone marrow macrophages isolated from IL-17A-/- and Wt mice.ResultsIL-17A upregulates the receptor activator for NF-kappaB receptor on human osteoclast precursors in vitro, leading to increased sensitivity to RANKL signalling, osteoclast differentiation and bone loss. IL-17A-/- mice have physiological bone homeostasis indistinguishable from Wt mice, and bone marrow macrophages isolated from these mice develop fully functional normal osteoclasts.ConclusionsCollectively our data demonstrate anti-IL-17A treatment as a selective therapeutic target for bone loss associated with autoimmune diseases

    Actin Crosslinking Toxins of Gram-Negative Bacteria

    Get PDF
    Actin crosslinking toxins produced by Gram-negative bacteria represent a small but unique class of bacterial protein toxins. For each of these toxins, a discrete actin crosslinking domain (ACD) that is a distant member of the ATP-dependent glutamine synthetase family of protein ligases is translocated to the eukaryotic cell cytosol. This domain then incorporates a glutamate-lysine crosslink between actin monomers, resulting in destruction of the actin cytoskeleton. Recent studies argue that the function of these toxins during infection is not destruction of epithelial layers, but rather may specifically target phagocytic cells to promote survival of bacteria after the onset of innate immune defenses. This review will summarize key experiments performed over the past 10 years to reveal the function of these toxins

    IL-23 stimulates epidermal hyperplasia via TNF and IL-20R2–dependent mechanisms with implications for psoriasis pathogenesis

    Get PDF
    Aberrant cytokine expression has been proposed as an underlying cause of psoriasis, although it is unclear which cytokines play critical roles. Interleukin (IL)-23 is expressed in human psoriasis and may be a master regulator cytokine. Direct intradermal administration of IL-23 in mouse skin, but not IL-12, initiates a tumor necrosis factor–dependent, but IL-17A–independent, cascade of events resulting in erythema, mixed dermal infiltrate, and epidermal hyperplasia associated with parakeratosis. IL-23 induced IL-19 and IL-24 expression in mouse skin, and both genes were also elevated in human psoriasis. IL-23–dependent epidermal hyperplasia was observed in IL-19−/− and IL-24−/− mice, but was inhibited in IL-20R2−/− mice. These data implicate IL-23 in the pathogenesis of psoriasis and support IL-20R2 as a novel therapeutic target

    Tidal Heating of Terrestrial Extra-Solar Planets and Implications for their Habitability

    Full text link
    The tidal heating of hypothetical rocky (or terrestrial) extra-solar planets spans a wide range of values depending on stellar masses and initial orbits. Tidal heating may be sufficiently large (in many cases, in excess of radiogenic heating) and long-lived to drive plate tectonics, similar to the Earth's, which may enhance the planet's habitability. In other cases, excessive tidal heating may result in Io-like planets with violent volcanism, probably rendering them unsuitable for life. On water-rich planets, tidal heating may generate sub-surface oceans analogous to Europa's with similar prospects for habitability. Tidal heating may enhance the outgassing of volatiles, contributing to the formation and replenishment of a planet's atmosphere. To address these issues, we model the tidal heating and evolution of hypothetical extra-solar terrestrial planets. The results presented here constrain the orbital and physical properties required for planets to be habitable.Comment: accepted for publication in MNRAS on 2008 Aug 20 35 manuscript pages, 7 figure

    Overview of Spirit Microscopic Imager Results

    Get PDF
    This paper provides an overview of Mars Exploration Rover Spirit Microscopic Imager (MI) operations and the calibration, processing, and analysis of MI data. The focus of this overview is on the last five Earth years (2005-2010) of Spirit's mission in Gusev crater, supplementing the previous overview of the first 450 sols of the Spirit MI investigation. Updates to radiometric calibration using in-flight data and improvements in high-level processing are summarized. Released data products are described, and a table of MI observations, including target/feature names and associated data sets, is appended. The MI observed natural and disturbed exposures of rocks and soils as well as magnets and other rover hardware. These hand-lens-scale observations have provided key constraints on interpretations of the formation and geologic history of features, rocks, and soils examined by Spirit. MI images complement observations by other Spirit instruments, and together show that impact and volcanic processes have dominated the origin and evolution of the rocks in Gusev crater, with aqueous activity indicated by the presence of silica-rich rocks and sulfate-rich soils. The textures of some of the silica-rich rocks are similar to terrestrial hot spring deposits, and observations of subsurface cemented layers indicate recent aqueous mobilization of sulfates in places. Wind action has recently modified soils and abraded many of the rocks imaged by the MI, as observed at other Mars landing sites. Plain Language Summary The Microscopic Imager (MI) on NASA's Spirit rover returned the highest-resolution images of the Martian surface available at the time of the 2004-2010 mission. Designed to survive 90 Mars days (sols) and search for evidence of water in the past, Spirit returned data for 2210 sols, far exceeding all expectations. This paper summarizes the scientific insights gleaned from the thousands of MI images acquired during the last 5years of the mission, supplementing the summary of the first 450 sols of the Spirit MI investigation published previously (Herkenhoff et al., ). Along with data from the other instruments on Spirit, MI images guided the scientific interpretation of the geologic history of the rocks and soils observed in Gusev crater on Mars. We conclude that the geologic history of the area explored by Spirit has been dominated by impacts and volcanism, and that water, perhaps very hot water, was involved in the evolution of some of the rocks and soils. More recently, winds have moved soil particles and abraded rocks, as observed elsewhere on Mars. These results have improved our understanding of Mars' history and informed planning of future missions to Mars.National Aeronautics and Space AdministrationPublic domain articleThis item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at [email protected]
    • …
    corecore