10 research outputs found

    Soil biogeochemistry across Central and South American tropical dry forests

    Get PDF
    The availability of nitrogen (N) and phosphorus (P) controls the flow of carbon (C) among plants, soils, and the atmosphere, thereby shaping terrestrial ecosystem responses to global change. Soil C, N, and P cycles are linked by drivers operating at multiple spatial and temporal scales: landscape-level variation in macroclimate and soil geochemistry, stand-scale heterogeneity in forest composition, and microbial community dynamics at the soil pore scale. Yet in many biomes, we do not know at which scales most of the biogeochemical variation emerges, nor which processes drive cross-scale feedbacks. Here, we examined the drivers and spatial/temporal scales of variation in soil biogeochemistry across four tropical dry forests spanning steep environmental gradients. To do so, we quantified soil C, N, and P pools, extracellular enzyme activities, and microbial community structure across wet and dry seasons in 16 plots located in Colombia, Costa Rica, Mexico, and Puerto Rico. Soil biogeochemistry exhibited marked heterogeneity across the 16 plots, with total organic C, N, and P pools varying fourfold, and inorganic nutrient pools by an order of magnitude. Most soil characteristics changed more across space (i.e., among sites and plots) than over time (between dry and wet season samplings). We observed stoichiometric decoupling among C, N, and P cycles, which may reflect their divergent biogeochemical drivers. Organic C and N pool sizes were positively correlated with the relative abundance of ectomycorrhizal trees and legumes. By contrast, the distribution of soil P pools was driven by soil geochemistry, with larger inorganic P pools in soils with P-rich parent material. Most earth system models assume that soils within a texture class operate similarly, and ignore subgrid cell variation in soil properties. Here we reveal that soil nutrient pools and fluxes exhibit as much variation among four Neotropical dry forests as is observed across terrestrial ecosystems at the global scale. Soil biogeochemical patterns are driven not only by regional differences in soil parent material and climate, but also by local-scale variation in plant and microbial communities. Thus, the biogeochemical patterns we observed across the Neotropical dry forest biome challenge representation of soil processes in ecosystem models

    Legume abundance along successional and rainfall gradients in Neotropical forests

    Get PDF
    The nutrient demands of regrowing tropical forests are partly satisfied by nitrogen-fixing legume trees, but our understanding of the abundance of those species is biased towards wet tropical regions. Here we show how the abundance of Leguminosae is affected by both recovery from disturbance and large-scale rainfall gradients through a synthesis of forest inventory plots from a network of 42 Neotropical forest chronosequences. During the first three decades of natural forest regeneration, legume basal area is twice as high in dry compared with wet secondary forests. The tremendous ecological success of legumes in recently disturbed, water-limited forests is likely to be related to both their reduced leaflet size and ability to fix N2, which together enhance legume drought tolerance and water-use efficiency. Earth system models should incorporate these large-scale successional and climatic patterns of legume dominance to provide more accurate estimates of the maximum potential for natural nitrogen fixation across tropical forests.Additional co-authors: Rebecca J. Cole, Gabriel Dalla Colletta, Ben de Jong, Julie S. Denslow, Saara J. DeWalt, Juan Manuel Dupuy, Sandra M. Durán, Mário Marcos do Espírito Santo, G. Wilson Fernandes, Yule Roberta Ferreira Nunes, Bryan Finegan, Vanessa Granda Moser, Jefferson S. Hall, José Luis Hernández-Stefanoni, André B. Junqueira, Deborah Kennard, Edwin Lebrija-Trejos, Susan G. Letcher, Madelon Lohbeck, Erika Marín-Spiotta, Miguel Martínez-Ramos, Jorge A. Meave, Duncan N. L. Menge, Francisco Mora, Rodrigo Muñoz, Robert Muscarella, Susana Ochoa-Gaona, Edith Orihuela-Belmonte, Rebecca Ostertag, Marielos Peña-Claros, Eduardo A. Pérez-García, Daniel Piotto, Peter B. Reich, Casandra Reyes-García, Jorge Rodríguez-Velázquez, I. Eunice Romero-Pérez, Lucía Sanaphre-Villanueva, Arturo Sanchez-Azofeifa, Naomi B. Schwartz, Arlete Silva de Almeida, Jarcilene S. Almeida-Cortez, Whendee Silver, Vanessa de Souza Moreno, Benjamin W. Sullivan, Nathan G. Swenson, Maria Uriarte, Michiel van Breugel, Hans van der Wal, Maria das Dores Magalhães Veloso, Hans F. M. Vester, Ima Célia Guimarães Vieira, Jess K. Zimmerman & Jennifer S. Power

    Scaling of stem diameter and height allometry in 14 neotropical palm species of different forest strata Gerardo

    No full text
    Tropical palms reach tree-like heights without a vascular cambium through sustained cell expansion and lignification of primary tissues, but only a fraction of palms have been explored in their allometric relationships. Here, our main question was to determine how palms depart from the traditional mechanical models developed for trees and how they approach the theoretical buckling limit. We analyzed the stem allometry of 1603 palms of 14 species from different strata at 10 sites in Costa Rica and Peru. We measured their fit to the stress, elastic, and geometric similarity models, and their position relative to the maximum theoretical buckling limit calculated for trees. We evaluated the slope of the linear and logarithmic regres- sions between stem diameter and height using logarithmic least squares, and standardized major axis regression (SMA), expecting segregation according to canopy position and geographic location. Seventeen out of 19 statistically significant models had SMA slopes > 1, and 11 had SMA slopes ≥ 2, departing from traditional mechanical models developed for trees. Many species varied their allometry relative to geographic location. Canopy palms showed the highest regression fit but had less steep slopes than understory and subcanopy species. Subcanopy and understory species were more underbuilt than canopy palms, increasing height faster than diameter. Some of the tallest canopy palms surpassed the maximum buckling limit whereas subcanopy and understory species were consistently below the buckling limit of record-size trees. Palm stem allometry changed in response to environmental conditions.Universidad de Costa RicaThe International Palm SocietyThe Organization for Tropical StudiesTirimbina Biological ReserveIdeaWildThe School for Field StudiesUCR::Vicerrectoría de Docencia::Ciencias Básicas::Facultad de Ciencias::Escuela de Biologí

    Fixing tropical forests

    No full text
    An extensive dataset indicates that nitrogen-fixing trees are most abundant in young, dry tropical forests. The finding expands the potential for natural nitrogen fertilization and carbon dioxide sequestration in areas recovering from land use

    Data from: Legume abundance along successional and rainfall gradients in neotropical forests

    No full text
    This database is the product of the 2ndFOR collaborative research network on secondary forests. The database contains total basal area data (in m2 ha-1) of legume trees (Leguminosae) for 1207 secondary forest plots differing in time since abandonment. The plots belong to different chonosequence studies. For a description of the database, see Gei et al. 2018. Legume Abundance Along Successional And Rainfall Gradients In Neotropical Forests. Nature Ecology and Evolution. The file "Legume basal area 2ndFOR data.csv" contains the following variables: Chronosequence: name of the chronosequence site Age: age of the plot (in years), "OG" indicates old-growth forest of unknown age LBA: total basal area of legume trees (Leguminosae) of the plot in m2 ha-1 Reference: a citation for the chronosequence study, if available PI/contact person: name(s) of the principal investigator(s) or contact person(s) for the chronosequence study

    Data from: Legume abundance along successional and rainfall gradients in neotropical forests

    No full text
    The nutrient demands of regrowing tropical forests are partly satisfied by nitrogen (N)-fixing legume trees, but our understanding of the abundance of those species is biased towards wet tropical regions. Here we show how the abundance of Leguminosae is affected by both recovery from disturbance and large-scale rainfall gradients through a synthesis of forest-inventory plots from a network of 42 Neotropical forest chronosequences. During the first three decades of natural forest regeneration, legume basal area is twice as high in dry compared to wet secondary forests. The tremendous ecological success of legumes in recently disturbed, water-limited forests is likely related to both their reduced leaflet size and ability to fix N2, which together enhance legume drought tolerance and water-use efficiency. Earth system models should incorporate these large-scale successional and climatic patterns of legume dominance to provide more accurate estimates of the maximum potential for natural N fixation across tropical forests

    Data from: Legume Abundance Along Successional And Rainfall Gradients In Neotropical Forests

    No full text
    This database is the product of the 2ndFOR collaborative research network on secondary forests. The database contains total basal area data (in m2 ha-1) of legume trees (Leguminosae) for 1207 secondary forest plots differing in time since abandonment. The plots belong to different chonosequence studies. For a description of the database, see Gei et al. 2018. Legume Abundance Along Successional And Rainfall Gradients In Neotropical Forests. Nature Ecology and Evolution. The file "Legume basal area 2ndFOR data.csv" contains the following variables: Chronosequence: name of the chronosequence site Age: age of the plot (in years), "OG" indicates old-growth forest of unknown age LBA: total basal area of legume trees (Leguminosae) of the plot in m2 ha-1 Reference: a citation for the chronosequence study, if available PI/contact person: name(s) of the principal investigator(s) or contact person(s) for the chronosequence study
    corecore