38 research outputs found

    IFN regulatory factor 3 balances Th1 and T follicular helper immunity during nonlethal blood-stage Plasmodium infection

    No full text
    Differentiation of CD4Th cells is critical for immunity to malaria. Several innate immune signaling pathways have been implicated in the detection of blood-stageparasites, yet their influence over Th cell immunity remains unclear. In this study, we usedreactive TCR transgenic CD4T cells, termed PbTII cells, during nonlethalAS and17XNL infection in mice, to examine Th cell development in vivo. We found no role for caspase1/11, stimulator of IFN genes, or mitochondrial antiviral-signaling protein, and only modest roles for MyD88 and TRIF-dependent signaling in controlling PbTII cell expansion. In contrast, IFN regulatory factor 3 (IRF3) was important for supporting PbTII expansion, promoting Th1 over T follicular helper (Tfh) differentiation, and controlling parasites during the first week of infection. IRF3 was not required for early priming by conventional dendritic cells, but was essential for promoting CXCL9 and MHC class II expression by inflammatory monocytes that supported PbTII responses in the spleen. Thereafter, IRF3-deficiency boosted Tfh responses, germinal center B cell and memory B cell development, parasite-specific Ab production, and resolution of infection. We also noted a B cell-intrinsic role for IRF3 in regulating humoral immune responses. Thus, we revealed roles for IRF3 in balancing Th1- and Tfh-dependent immunity during nonlethal infection with blood-stageparasites
    corecore