72 research outputs found

    Low levels of intraspecific trait variation in a keystone invertebrate group

    Get PDF
    The trait-based approach to ecology promises to provide a mechanistic understanding of species distributions and ecosystem functioning. Typically, trait analyses focus on average species trait values and assume that intraspecific variation is small or negligible. Recent work has shown, however, that intraspecific trait variation can often contribute substantially to total trait variation. Whilst many studies have investigated intraspecific variation in plants, very few have done so for invertebrates. There is no research on the level of intraspecific trait variation in ants (Hymenoptera: Formicidae), despite the fact that there is a growing body of literature using ant morphological trait data and demonstrating that these insects play important roles in many ecosystems and food webs. Here, we investigate the intraspecific variability of four commonly used ant morphological traits from 23 species from the Maloti-Drakensberg Mountains of southern Africa. In total, we measured 1145 different individuals and made 6870 trait measurements. Intraspecific variation accounted for only 1–4% of total trait variation for each of the four traits we analysed. We found no links between intraspecific variation, phylogeny and elevation. On average, six individuals generated robust species means but under biased sampling scenarios 20 individuals were needed. The low levels of intraspecific morphological variation that we find suggest that the approach of using mean species traits is valid, in this fauna at least. Regardless, we encourage ant trait ecologists to measure greater numbers of individuals, especially across gradients, to shed further light on intraspecific variation in this functionally important group of insects

    Epinephrine and short-term survival in cardiogenic shock : an individual data meta-analysis of 2583 patients

    Get PDF
    Correction Volume: 44 Issue: 11 Pages: 2022-2023 DOI: 10.1007/s00134-018-5372-9Catecholamines have been the mainstay of pharmacological treatment of cardiogenic shock (CS). Recently, use of epinephrine has been associated with detrimental outcomes. In the present study we aimed to evaluate the association between epinephrine use and short-term mortality in all-cause CS patients. We performed a meta-analysis of individual data with prespecified inclusion criteria: (1) patients in non-surgical CS treated with inotropes and/or vasopressors and (2) at least 15% of patients treated with epinephrine administrated alone or in association with other inotropes/vasopressors. The primary outcome was short-term mortality. Fourteen published cohorts and two unpublished data sets were included. We studied 2583 patients. Across all cohorts of patients, the incidence of epinephrine use was 37% (17-76%) and short-term mortality rate was 49% (21-69%). A positive correlation was found between percentages of epinephrine use and short-term mortality in the CS cohort. The risk of death was higher in epinephrine-treated CS patients (OR [CI] = 3.3 [2.8-3.9]) compared to patients treated with other drug regimens. Adjusted mortality risk remained striking in epinephrine-treated patients (n = 1227) (adjusted OR = 4.7 [3.4-6.4]). After propensity score matching, two sets of 338 matched patients were identified and epinephrine use remained associated with a strong detrimental impact on short-term mortality (OR = 4.2 [3.0-6.0]). In this very large cohort, epinephrine use for hemodynamic management of CS patients is associated with a threefold increase of risk of death.Peer reviewe

    Industrial Nationalism versus European Partnerships: An Analysis of State-led Franco-German Inter-firm Linkages

    Get PDF
    YesThis paper examines the impact of state intervention in French-German inter-firm linkages and discusses the implications of conflicting national interests for the furthering of single market integration. It demonstrates that despite initial success in launching large-scale cross-border alliances in strategic sectors, France and Germany have remained divided by their own industrial nationalism. It argues that their respective attitudes towards industrial policy are less contradictory than would appear at first sight, but that transcending industrial nationalism by Europeanising the notion of economic patriotism would be an essential pre-condition for a more efficient EU-wide industrial policy within a better integrated internal market

    Exhaustive exercise training enhances aerobic capacity in American alligator (Alligator mississippiensis)

    Get PDF
    The oxygen transport system in mammals is extensively remodelled in response to repeated bouts of activity, but many reptiles appear to be ‘metabolically inflexible’ in response to exercise training. A recent report showed that estuarine crocodiles (Crocodylus porosus) increase their maximum metabolic rate in response to exhaustive treadmill training, and in the present study, we confirm this response in another crocodilian, American alligator (Alligator mississippiensis). We further specify the nature of the crocodilian training response by analysing effects of training on aerobic [citrate synthase (CS)] and anaerobic [lactate dehydrogenase (LDH)] enzyme activities in selected skeletal muscles, ventricular and skeletal muscle masses and haematocrit. Compared to sedentary control animals, alligators regularly trained for 15 months on a treadmill (run group) or in a flume (swim group) exhibited peak oxygen consumption rates higher by 27 and 16%, respectively. Run and swim exercise training significantly increased ventricular mass (~11%) and haematocrit (~11%), but not the mass of skeletal muscles. However, exercise training did not alter CS or LDH activities of skeletal muscles. Similar to mammals, alligators respond to exercise training by increasing convective oxygen transport mechanisms, specifically heart size (potentially greater stroke volume) and haematocrit (increased oxygen carrying-capacity of the blood). Unlike mammals, but similar to squamate reptiles, alligators do not also increase citrate synthase activity of the skeletal muscles in response to exercise

    Plant trait and vegetation data along a 1314 m elevation gradient with fire history in Puna grasslands, Perú

    Get PDF
    Alpine grassland vegetation supports globally important biodiversity and ecosystems that are increasingly threatened by climate warming and other environmental changes. Trait-based approaches can support understanding of vegetation responses to global change drivers and consequences for ecosystem functioning. In six sites along a 1314 m elevational gradient in Puna grasslands in the Peruvian Andes, we collected datasets on vascular plant composition, plant functional traits, biomass, ecosystem fluxes, and climate data over three years. The data were collected in the wet and dry season and from plots with different fire histories. We selected traits associated with plant resource use, growth, and life history strategies (leaf area, leaf dry/wet mass, leaf thickness, specific leaf area, leaf dry matter content, leaf C, N, P content, C and N isotopes). The trait dataset contains 3,665 plant records from 145 taxa, 54,036 trait measurements (increasing the trait data coverage of the regional flora by 420%) covering 14 traits and 121 plant taxa (ca. 40% of which have no previous publicly available trait data) across 33 families

    A922 Sequential measurement of 1 hour creatinine clearance (1-CRCL) in critically ill patients at risk of acute kidney injury (AKI)

    Get PDF
    Meeting abstrac

    Benefits of protected areas for nonbreeding waterbirds adjusting their distributions under climate warming

    Get PDF
    Climate warming is driving changes in species distributions and community composition. Many species have a so-called climatic debt, that is, shifts in range lag behind shifts in temperature isoclines. Inside protected areas (PAs), community changes in response to climate warming can be facilitated by greater colonization rates by warm-dwelling species, but also mitigated by lowering extirpation rates of cold-dwelling species. An evaluation of the relative importance of colonization-extirpation processes is important to inform conservation strategies that aim for both climate debt reduction and species conservation. We assessed the colonization-extirpation dynamics involved in community changes in response to climate inside and outside PAs. To do so, we used 25 years of occurrence data of nonbreeding waterbirds in the western Palearctic (97 species, 7071 sites, 39 countries, 1993-2017). We used a community temperature index (CTI) framework based on species thermal affinities to investigate species turnover induced by temperature increase. We determined whether thermal community adjustment was associated with colonization by warm-dwelling species or extirpation of cold-dwelling species by modeling change in standard deviation of the CTI (CTISD). Using linear mixed-effects models, we investigated whether communities in PAs had lower climatic debt and different patterns of community change than communities outside PAs. For CTI and CTISD combined, communities inside PAs had more species, higher colonization, lower extirpation, and lower climatic debt (16%) than communities outside PAs. Thus, our results suggest that PAs facilitate 2 independent processes that shape community dynamics and maintain biodiversity. The community adjustment was, however, not sufficiently fast to keep pace with the large temperature increases in the central and northeastern western Palearctic. Our results underline the potential of combining CTI and CTISD metrics to improve understanding of the colonization-extirpation patterns driven by climate warming

    Acetate production from lactose by Clostridium thermolacticum and hydrogen-scavenging microorganisms in continuous culture - Effect of hydrogen partial pressure

    No full text
    The effect of the addition of hydrogen-consuming microorganisms on the metabolism of Clostridium thermolacticum was studied. By growing this bacterium in continuous culture at 58 degrees C, on 29 mmol lactose l(-1) (10 g l(-1)) in the feed, with the H-2-consuming microorganisms Methanothermobacter thermoautotrophicus and Moorella thermoautotrophica, the volumetric productivity of acetate was increased up to 3.9 mmol l(-1) h(-1) at a dilution rate of 0.058 h(-1). This was about three times higher than the maximal acetate volumetric productivity quiantified when C. thermolacticum was cultivated alone. In the consortium, C. thermolacticum was the only species able to metabolize lactose; it produced not only acetate, but also hydrogen, carbon dioxide and lactate. The other species of the consortium were growing on these by-products. Meth. thermoautotrophicus played an important role as a very efficient hydrogen scavenger and decreased the hydrogen partial pressure drastically: hydrogen was converted to methane. Moor. thermoautotrophica converted lactate as well as hydrogen and carbon dioxide into acetate. As a consequence, lactose was efficiently consumed and the only organic product in the liquid phase was acetate. (C) 2005 Elsevier B.V. All rights reserved
    corecore