91 research outputs found
Global change in the trophic functioning of marine food webs
The development of fisheries in the oceans, and other human drivers such as climate warming, have led to changes in species abundance, assemblages, trophic interactions, and ultimately in the functioning of marine food webs. Here, using a trophodynamic approach and global databases of catches and life history traits of marine species, we tested the hypothesis that anthropogenic ecological impacts may have led to changes in the global parameters defining the transfers of biomass within the food web. First, we developed two indicators to assess such changes: the Time Cumulated Indicator (TCI) measuring the residence time of biomass within the food web, and the Efficiency Cumulated Indicator (ECI) quantifying the fraction of secondary production reaching the top of the trophic chain. Then, we assessed, at the large marine ecosystem scale, the worldwide change of these two indicators over the 1950-2010 time-periods. Global trends were identified and cluster analyses were used to characterize the variability of trends between ecosystems. Results showed that the most common pattern over the study period is a global decrease in TCI, while the ECI indicator tends to increase. Thus, changes in species assemblages would induce faster and apparently more efficient biomass transfers in marine food webs. Results also suggested that the main driver of change over that period had been the large increase in fishing pressure. The largest changes occurred in ecosystems where 'fishing down the marine food web' are most intensive
Scientific Advice on the estimation of surplus for Sustainable Fisheries Partnership Agreements.
Scientific advice on the concept of surplus, as defined by the UNCLOS, was provided for three types of Sustainable Fisheries Partnership Agreements (SFPAs): i) Mixed SFPAs in West Africa, ii) Tuna SFPAs and iii) SFPA with Greenland. For Mixed SFPAs in West Africa, methods for surplus computation were defined, including alternatives for cases of data limited stocks. These methods may use as input five parameters that could be obtained from those recent stocks assessments that are representative of the current stock status. Surplus estimates would need to be regularly updated (ideally, yearly), according to every new stock assessments and following the enforcement of a management plan (or, by default, according to a transition scheme towards reaching Fmsy in 2020). In the case of West African transboundary stocks, a theoretical share of the surplus could be calculated using a standard rule based on historical catches within EEZs. The Surplus concept is not applicable for Tuna SFPAs, due to the high migratory character of tuna or tuna-like species, the fact that these stocks are mostly found in areas beyond national jurisdictions, the lack of direct estimates of local abundance and impossibility to calculate the capacity of the coastal States. For the SFPA with Greenland, Surplus is considered as any TAC allocated to Greenland and not utilised by this coastal State
Recommended from our members
Potential impacts of climate change on agriculture and fisheries production in 72 tropical coastal communities
Climate change is expected to profoundly affect key food production sectors, including fisheries and agriculture. However, the potential impacts of climate change on these sectors are rarely considered jointly, especially below national scales, which can mask substantial variability in how communities will be affected. Here, we combine socioeconomic surveys of 3,008 households and intersectoral multi-model simulation outputs to conduct a sub-national analysis of the potential impacts of climate change on fisheries and agriculture in 72 coastal communities across five Indo-Pacific countries (Indonesia, Madagascar, Papua New Guinea, Philippines, and Tanzania). Our study reveals three key findings: First, overall potential losses to fisheries are higher than potential losses to agriculture. Second, while most locations (> 2/3) will experience potential losses to both fisheries and agriculture simultaneously, climate change mitigation could reduce the proportion of places facing that double burden. Third, potential impacts are more likely in communities with lower socioeconomic status
Bacterial Diversity in Oral Samples of Children in Niger with Acute Noma, Acute Necrotizing Gingivitis, and Healthy Controls
Noma is a devastating gangrenous disease that leads to severe facial disfigurement, but its cause remains unknown. It is associated with high morbidity and mortality and affects almost exclusively young children living in remote areas of developing countries, particularly in Africa. Several factors have been linked to the disease, including malnutrition, immune dysfunction, lack of oral hygiene, and lesions of the mucosal gingival barrier, particularly the presence of acute necrotizing gingivitis, and a potentially non-identified bacterial factor acting as a trigger for the disease. This study assessed the total bacterial diversity present in 69 oral samples of 55 children in Niger with or without acute noma or acute necrotizing gingivitis using culture-independent molecular methods. Analysis of bacterial composition and frequency showed that diseased and healthy site bacterial communities are composed of similar bacteria, but differ in the prevalence of a limited group of phylotypes. We failed to identify a causative infectious agent for noma or acute necrotizing gingivitis as the most plausible pathogens for both conditions were present also in sizeable numbers in healthy subjects. Most likely, the disease is initiated by a synergistic combination of several bacterial species, and not a single agent
Are we ready to track climate-driven shifts in marine species across international boundaries? - A global survey of scientific bottom trawl data
Marine biota are redistributing at a rapid pace in response to climate change and shifting seascapes. While changes in fish populations and community structure threaten the sustainability of fisheries, our capacity to adapt by tracking and projecting marine species remains a challenge due to data discontinuities in biological observations, lack of data availability, and mismatch between data and real species distributions. To assess the extent of this challenge, we review the global status and accessibility of ongoing scientific bottom trawl surveys. In total, we gathered metadata for 283,925 samples from 95 surveys conducted regularly from 2001 to 2019. We identified that 59% of the metadata collected are not publicly available, highlighting that the availability of data is the most important challenge to assess species redistributions under global climate change. Given that the primary purpose of surveys is to provide independent data to inform stock assessment of commercially important populations, we further highlight that single surveys do not cover the full range of the main commercial demersal fish species. An average of 18 surveys is needed to cover at least 50% of species ranges, demonstrating the importance of combining multiple surveys to evaluate species range shifts. We assess the potential for combining surveys to track transboundary species redistributions and show that differences in sampling schemes and inconsistency in sampling can be overcome with spatio-temporal modeling to follow species density redistributions. In light of our global assessment, we establish a framework for improving the management and conservation of transboundary and migrating marine demersal species. We provide directions to improve data availability and encourage countries to share survey data, to assess species vulnerabilities, and to support management adaptation in a time of climate-driven ocean changes.En prensa6,86
Les modĂšles halieutiques : de la gestion des stocks Ă lâĂ©valuation des impacts Ă©cosystĂ©miques
Les modĂšles halieutiques : de la gestion des stocks Ă lâĂ©valuation des impacts Ă©cosystĂ©mique
Towards the implementation of an integrated ecosystem fleet-based management of European fisheries.
Towards the implementation of an integrated ecosystem fleet-based management of European fisheries
L'approche Ă©cosystemique des pĂȘches : une rĂ©volution pour la recherche et pour la gestion des pĂȘches et des Ă©cosystemes marins. Quels enseignements pour les eaux continentales ?
L'approche Ă©cosystemique des pĂȘches : une rĂ©volution pour la recherche et pour la gestion des pĂȘches et des Ă©cosystemes marins. Quels enseignements pour les eaux continentales
Building fleet-based management plans, a pathway to implement an effective EAFM in European Seas.
Building fleet-based management plans, a pathway to implement an effective EAFM in European Seas
Gestion des pĂȘches maritimes : l'avis scientifique dans la tempete
Gestion des pĂȘches maritimes : l?avis scientifique dans la tempet
- âŠ