66 research outputs found

    Measuring quality of diabetes care by linking health care system administrative databases with laboratory data

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Chronic complications of diabetes can be reduced through optimal glycemic and lipid control as evaluated through measurement of glycosylated hemoglobin (A1C) and low-density lipoprotein cholesterol (LDL-C). We aimed to produce measures of quality of diabetes care in Saskatchewan and to identify sub-groups at particular risk of developing complications.</p> <p>Findings</p> <p>Prevalent adult cases of diabetes in 2005/06 were identified from administrative databases and linked with A1C and LDL-C tests measured in centralized laboratories. A1C results were performed in 33,927 of 50,713 (66.9%) diabetes cases identified in Saskatchewan, and LDL-C results were performed in 12,031 of 24,207 (49.7%) cases identified within the province's two largest health regions. The target A1C of <= 7.0% and the target LDL-C of <2.5 mmol/L were achieved in 48.3% and 45.1% of diabetes cases respectively. The proportions were lower among those who were female, First Nations, non-urban, younger and in lower income quintiles. The same groups experienced poorer glycemic control (exception females), and poorer lipid control (exception First Nations people). Among non-Aboriginal people, younger diabetic females were least likely to receive lipid lowering agents.</p> <p>Conclusions</p> <p>Linkage of laboratory with administrative data is an effective method of assessing quality of diabetes care on a population basis and to identify sub-groups requiring particular attention. We found that less than 50% of Saskatchewan people with diabetes achieved optimal glycemic and lipid control. Disparities were most evident among First Nations people and young women. The indicators described can be used to provide standardized information that would support quality improvement initiatives.</p

    Agreement between administrative data and the Resident Assessment Instrument Minimum Dataset (RAI-MDS) for medication use in long-term care facilities: a population-based study

    Get PDF
    Background: Prescription medication use, which is common among long-term care facility (LTCF) residents, is routinely used to describe quality of care and predict health outcomes. Data sources that capture medication information, which include surveys, medical charts, administrative health databases, and clinical assessment records, may not collect concordant information, which can result in comparable prevalence and effect size estimates. The purpose of this research was to estimate agreement between two population-based electronic data sources for measuring use of several medication classes among LTCF residents: outpatient prescription drug administrative data and the Resident Assessment Instrument Minimum Data Set (RAI-MDS) Version 2.0. Methods: Prescription drug and RAI-MDS data from the province of Saskatchewan, Canada (population 1.1 million) were linked for 2010/11 in this cross-sectional study. Agreement for anti-psychotic, anti-depressant, and anti-anxiety/hypnotic medication classes was examined using prevalence estimates, Cohen’s κ, and positive and negative agreement. Mixed-effects logistic regression models tested resident and facility characteristics associated with disagreement. Results: The cohort was comprised of 8,866 LTCF residents. In the RAI-MDS data, prevalence of anti-psychotics was 35.7%, while for anti-depressants it was 37.9% and for hypnotics it was 27.1%. Prevalence was similar in prescription drug data for anti-psychotics and anti-depressants, but lower for hypnotics (18.0%). Cohen’s κ ranged from 0.39 to 0.85 and was highest for the first two medication classes. Diagnosis of a mood disorder and facility affiliation was associated with disagreement for hypnotics. Conclusions: Agreement between prescription drug administrative data and RAI-MDS assessment data was influenced by the type of medication class, as well as selected patient and facility characteristics. Researchers should carefully consider the purpose of their study, whether it is to capture medication that are dispensed or medications that are currently used by residents, when selecting a data source for research on LTCF populations

    An evaluation of data quality in Canada’s Continuing Care Reporting System (CCRS): secondary analyses of Ontario data submitted between 1996 and 2011

    Full text link
    Abstract Background Evidence informed decision making in health policy development and clinical practice depends on the availability of valid and reliable data. The introduction of interRAI assessment systems in many countries has provided valuable new information that can be used to support case mix based payment systems, quality monitoring, outcome measurement and care planning. The Continuing Care Reporting System (CCRS) managed by the Canadian Institute for Health Information has served as a data repository supporting national implementation of the Resident Assessment Instrument (RAI 2.0) in Canada for more than 15 years. The present paper aims to evaluate data quality for the CCRS using an approach that may be generalizable to comparable data holdings internationally. Methods Data from the RAI 2.0 implementation in Complex Continuing Care (CCC) hospitals/units and Long Term Care (LTC) homes in Ontario were analyzed using various statistical techniques that provide evidence for trends in validity, reliability, and population attributes. Time series comparisons included evaluations of scale reliability, patterns of associations between items and scales that provide evidence about convergent validity, and measures of changes in population characteristics over time. Results Data quality with respect to reliability, validity, completeness and freedom from logical coding errors was consistently high for the CCRS in both CCC and LTC settings. The addition of logic checks further improved data quality in both settings. The only notable change of concern was a substantial inflation in the percentage of long term care home residents qualifying for the Special Rehabilitation level of the Resource Utilization Groups (RUG-III) case mix system after the adoption of that system as part of the payment system for LTC. Conclusions The CCRS provides a robust, high quality data source that may be used to inform policy, clinical practice and service delivery in Ontario. Only one area of concern was noted, and the statistical techniques employed here may be readily used to target organizations with data quality problems in that (or any other) area. There was also evidence that data quality was good in both CCC and LTC settings from the outset of implementation, meaning data may be used from the entire time series. The methods employed here may continue to be used to monitor data quality in this province over time and they provide a benchmark for comparisons with other jurisdictions implementing the RAI 2.0 in similar populations.http://deepblue.lib.umich.edu/bitstream/2027.42/112338/1/12911_2012_Article_635.pd

    Comparing comorbidity measures for predicting mortality and hospitalization in three population-based cohorts

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Multiple comorbidity measures have been developed for risk-adjustment in studies using administrative data, but it is unclear which measure is optimal for specific outcomes and if the measures are equally valid in different populations. This research examined the predictive performance of five comorbidity measures in three population-based cohorts.</p> <p>Methods</p> <p>Administrative data from the province of Saskatchewan, Canada, were used to create the cohorts. The general population cohort included all Saskatchewan residents 20+ years, the diabetes cohort included individuals 20+ years with a diabetes diagnosis in hospital and/or physician data, and the osteoporosis cohort included individuals 50+ years with diagnosed or treated osteoporosis. Five comorbidity measures based on health services utilization, number of different diagnoses, and prescription drugs over one year were defined. Predictive performance was assessed for death and hospitalization outcomes using measures of discrimination (<it>c</it>-statistic) and calibration (Brier score) for multiple logistic regression models.</p> <p>Results</p> <p>The comorbidity measures with optimal performance were the same in the general population (<it>n </it>= 662,423), diabetes (<it>n </it>= 41,925), and osteoporosis (<it>n </it>= 28,068) cohorts. For mortality, the Elixhauser index resulted in the highest <it>c</it>-statistic and lowest Brier score, followed by the Charlson index. For hospitalization, the number of diagnoses had the best predictive performance. Consistent results were obtained when we restricted attention to the population 65+ years in each cohort.</p> <p>Conclusions</p> <p>The optimal comorbidity measure depends on the health outcome and not on the disease characteristics of the study population.</p

    Incidence and prevalence of dementia in linked administrative health data in Saskatchewan, Canada: a retrospective cohort study.

    Get PDF
    Determining the epidemiology of dementia among the population as a whole in specific jurisdictions - including the long-term care population-is essential to providing appropriate care. The objectives of this study were to use linked administrative databases in the province of Saskatchewan to determine the 12-month incidence and prevalence of dementia for the 2012/13 period (1) among individuals aged 45 and older in the province of Saskatchewan, (2) according to age group and sex, and (3) according to diagnosis code and other case definition criteria

    Pleiotropy of genetic variants on obesity and smoking phenotypes: Results from the Oncoarray Project of The International Lung Cancer Consortium

    Get PDF
    Obesity and cigarette smoking are correlated through complex relationships. Common genetic causes may contribute to these correlations. In this study, we selected 241 loci potentially associated with body mass index (BMI) based on the Genetic Investigation of ANthropometric Traits (GIANT) consortium data and calculated a BMI genetic risk score (BMI-GRS) for 17,037 individuals of European descent from the Oncoarray Project of the International Lung Cancer Consortium (ILCCO). Smokers had a significantly higher BMI-GRS than never-smokers (p = 0.016 and 0.010 before and after adjustment for BMI, respectively). The BMI-GRS was also positively correlated with pack-years of smoking (p<0.001) in smokers. Based on causal network inference analyses, seven and five of 241 SNPs were classified to pleiotropic models for BMI/smoking status and BMI/pack-years, respectively. Among them, three and four SNPs associated with smoking status and pack-years (p<0.05), respectively, were followed up in the ever-smoking data of the Tobacco, Alcohol and Genetics (TAG) consortium. Among these seven candidate SNPs, one SNP (rs11030104, BDNF) achieved statistical significance after Bonferroni correction for multiple testing, and three suggestive SNPs (rs13021737, TMEM18; rs11583200, ELAVL4; and rs6990042, SGCZ) achieved a nominal statistical significance. Our results suggest that there is a common genetic component between BMI and smoking, and pleiotropy analysis can be useful to identify novel genetic loci of complex phenotypes

    Study protocol for the translating research in elder care (TREC): building context – an organizational monitoring program in long-term care project (project one)

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>While there is a growing awareness of the importance of organizational context (or the work environment/setting) to successful knowledge translation, and successful knowledge translation to better patient, provider (staff), and system outcomes, little empirical evidence supports these assumptions. Further, little is known about the factors that enhance knowledge translation and better outcomes in residential long-term care facilities, where care has been shown to be suboptimal. The project described in this protocol is one of the two main projects of the larger five-year Translating Research in Elder Care (TREC) program.</p> <p>Aims</p> <p>The purpose of this project is to establish the magnitude of the effect of organizational context on knowledge translation, and subsequently on resident, staff (unregulated, regulated, and managerial) and system outcomes in long-term care facilities in the three Canadian Prairie Provinces (Alberta, Saskatchewan, Manitoba).</p> <p>Methods/Design</p> <p>This study protocol describes the details of a multi-level – including provinces, regions, facilities, units within facilities, and individuals who receive care (residents) or work (staff) in facilities – and longitudinal (five-year) research project. A stratified random sample of 36 residential long-term care facilities (30 urban and 6 rural) from the Canadian Prairie Provinces will comprise the sample. Caregivers and care managers within these facilities will be asked to complete the TREC survey – a suite of survey instruments designed to assess organizational context and related factors hypothesized to be important to successful knowledge translation and to achieving better resident, staff, and system outcomes. Facility and unit level data will be collected using standardized data collection forms, and resident outcomes using the Resident Assessment Instrument-Minimum Data Set version 2.0 instrument. A variety of analytic techniques will be employed including descriptive analyses, psychometric analyses, multi-level modeling, and mixed-method analyses.</p> <p>Discussion</p> <p>Three key challenging areas associated with conducting this project are discussed: sampling, participant recruitment, and sample retention; survey administration (with unregulated caregivers); and the provision of a stable set of study definitions to guide the project.</p

    Obesity, metabolic factors and risk of different histological types of lung cancer: A Mendelian randomization study.

    Get PDF
    BACKGROUND: Assessing the relationship between lung cancer and metabolic conditions is challenging because of the confounding effect of tobacco. Mendelian randomization (MR), or the use of genetic instrumental variables to assess causality, may help to identify the metabolic drivers of lung cancer. METHODS AND FINDINGS: We identified genetic instruments for potential metabolic risk factors and evaluated these in relation to risk using 29,266 lung cancer cases (including 11,273 adenocarcinomas, 7,426 squamous cell and 2,664 small cell cases) and 56,450 controls. The MR risk analysis suggested a causal effect of body mass index (BMI) on lung cancer risk for two of the three major histological subtypes, with evidence of a risk increase for squamous cell carcinoma (odds ratio (OR) [95% confidence interval (CI)] = 1.20 [1.01-1.43] and for small cell lung cancer (OR [95%CI] = 1.52 [1.15-2.00]) for each standard deviation (SD) increase in BMI [4.6 kg/m2]), but not for adenocarcinoma (OR [95%CI] = 0.93 [0.79-1.08]) (Pheterogeneity = 4.3x10-3). Additional analysis using a genetic instrument for BMI showed that each SD increase in BMI increased cigarette consumption by 1.27 cigarettes per day (P = 2.1x10-3), providing novel evidence that a genetic susceptibility to obesity influences smoking patterns. There was also evidence that low-density lipoprotein cholesterol was inversely associated with lung cancer overall risk (OR [95%CI] = 0.90 [0.84-0.97] per SD of 38 mg/dl), while fasting insulin was positively associated (OR [95%CI] = 1.63 [1.25-2.13] per SD of 44.4 pmol/l). Sensitivity analyses including a weighted-median approach and MR-Egger test did not detect other pleiotropic effects biasing the main results. CONCLUSIONS: Our results are consistent with a causal role of fasting insulin and low-density lipoprotein cholesterol in lung cancer etiology, as well as for BMI in squamous cell and small cell carcinoma. The latter relation may be mediated by a previously unrecognized effect of obesity on smoking behavior
    • …
    corecore