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Abstract

Obesity and cigarette smoking are correlated through complex relationships. Common

genetic causes may contribute to these correlations. In this study, we selected 241 loci

potentially associated with body mass index (BMI) based on the Genetic Investigation of

ANthropometric Traits (GIANT) consortium data and calculated a BMI genetic risk score

(BMI-GRS) for 17,037 individuals of European descent from the Oncoarray Project of the

International Lung Cancer Consortium (ILCCO). Smokers had a significantly higher BMI-

GRS than never-smokers (p = 0.016 and 0.010 before and after adjustment for BMI, respec-

tively). The BMI-GRS was also positively correlated with pack-years of smoking (p<0.001)

in smokers. Based on causal network inference analyses, seven and five of 241 SNPs were

classified to pleiotropic models for BMI/smoking status and BMI/pack-years, respectively.

Among them, three and four SNPs associated with smoking status and pack-years

(p<0.05), respectively, were followed up in the ever-smoking data of the Tobacco, Alcohol

and Genetics (TAG) consortium. Among these seven candidate SNPs, one SNP

(rs11030104, BDNF) achieved statistical significance after Bonferroni correction for multiple

testing, and three suggestive SNPs (rs13021737, TMEM18; rs11583200, ELAVL4; and

rs6990042, SGCZ) achieved a nominal statistical significance. Our results suggest that

there is a common genetic component between BMI and smoking, and pleiotropy analysis

can be useful to identify novel genetic loci of complex phenotypes.

Introduction

Both obesity and cigarette smoking are risk factors for many human diseases, including multi-

ple cancers.[1–4] There are complex sources of correlations between smoking behavior and

obesity.[5,6] In general, current smokers tend to have a lower body mass index (BMI) than

never-smokers, while smoking cessation is associated with weight gain.[7–9] The reasons for

the association between BMI and smoking status may involve smoking-induced appetite sup-

pression via neural pathways [10] and increased energy expenditure via energy-regulating hor-

monal feedback loops.[11,12] On the other hand, heavy smokers tend to have a greater BMI

than light smokers; an observation that is seemingly contradictory to the metabolic effects of

smoking,[7,13] but may be partially attributed to the unhealthy behaviors associated with

heavy smoking. Another reason for the correlation between smoking behavior and obesity is

that there may be common underlying biological causes. There is growing evidence suggesting

that obesity may be partially due to addiction to food.[14,15] One plausible common mecha-

nism for obesity and smoking is brain reward effects arising from neuronal activity within the

dopamine system.[16] In any case, the reasons for the relationship between BMI and smoking

behavior remain uncertain.

Shared genetic susceptibility may offer another explanation for the correlation between

obesity and smoking. Both smoking and obesity have significant genetic components. In the

past, large-scale genome-wide association studies (GWAS) on obesity or variables related to

smoking characteristics (e.g., smoking status, age started smoking, and pack-years of smoking,

etc) have successfully identified multiple loci associated with these phenotypes.[17–25] Yet,

total variation in obesity or smoking traits explained by these GWAS loci is still limited.

[20,26–29] The remaining genetic variants still need to be identified. It was estimated that the

genetic correlation between smoking status and BMI was 0.20.[30] In a previous study in
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Iceland, the genetic risk score (GRS) of 32 common variants identified in GWAS of BMI was

associated with smoking initiation and the number of cigarettes smoked per day (CPD), sug-

gesting that smoking and BMI may share common genetic components.[31] However, this

study in Iceland only observed correlations of BMI associated SNPs with smoking variables,

without accounting for possible causal relationships between SNPs, BMI and smoking vari-

ables. We hypothesized that analyzing pleiotropic effects on BMI and smoking behavior may

discover novel genetic loci, otherwise undiscovered in GWAS with stringent genome-wide sig-

nificance, which in turn would further elucidate genetic architectures underlying both smok-

ing behavior and obesity. In this study, leveraging existing genotyping, BMI, and smoking data

from a lung cancer consortium, we confirmed the association between the BMI-GRS and

smoking-related variables with adjustment for BMI and important covariates, and used causal

network inference to identify potential genetic loci with pleiotropic effects on both BMI and

smoking-related phenotypes.

Materials and methods

Study population

The International Lung Cancer Consortium (ILCCO) was established in 2004 with the goal of

sharing comparable research data and maximizing research efficiency (http://ilcco.iarc.fr). To

further characterize cancer genetic architecture of common cancers, a custom OncoArray

(http://oncoarray.dartmouth.edu) genotyping chip that includes 550K markers was designed

to genotype samples in collaboration with other cancer consortia under The National Cancer

Institute (NCI) initiative on the Genetic Associations and Mechanisms in Oncology (GAME-

ON). In this study, we analyzed OncoArray genotypic data of 36,000 subjects of European

descent in ILCCO; among them, 17,037 provided individual epidemiological data and were of

European descent.

OncoArray genotyping, quality control and imputation

The GAME-ON OncoArray chip was previously described.[32] In brief, it includes a GWAS

backbone and a customized panel for dense mapping of known susceptibility regions, rare var-

iants from sequencing experiments, pharmacogenetic markers and cancer related traits includ-

ing smoking and BMI. The genotyping quality control of Oncoarray data was previously

described.[33] After filtering out SNPs by success rate and genotype distribution deviation

from the expected by Hardy-Weinberg equilibrium, 517,482 SNPs were available for analysis.

Standard quality control procedures were used to exclude underperforming samples (2,408),

unexpected duplicated or related samples (2,411), samples with sex error (316) and non-Cau-

casians (8,240). After quality control, 17,037 subjects with full information on both BMI and

smoking status, and other important covariates (age, sex, study sites, and lung cancer status)

were kept for analysis. Genotype data were imputed by the GAME-ON data coordinating cen-

ter for all scans for over 10 million SNPs using data from the 1000 Genomes Project (Phase 3,

October 2014) as reference.[34,35]. The data were imputed in a two-stage procedure using

SHAPEIT [36] to derive phased genotypes, and IMPUTEv2 to perform imputation of the

phased data. [35] Genotypes were aligned to the positive strand in both imputation and actual

genotyping.

SNP selection and derivation of the BMI-GRS

We first identified a large set of 4,961 SNPs associated with BMI with p<10−5 based on results

from the Genetic Investigation of ANthropometric Traits (GIANT) consortium, a large
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collaborative GWAS on human body size and shape. We then pruned SNPs by applying a

threshold value of r2 = 0.2 and requiring selected SNPs at least 500Kb apart to reduce redun-

dancy and obtained a subset of 241 independent SNPs that were at least 500Kb apart (S1

Table). To calculate the BMI-GRS, each SNP was recoded as 0, 1, or 2 according to the number

of risk alleles (BMI increasing alleles). The BMI-GRS was calculated using the equation: GRS =

(weight1×SNP1 + weight 2×SNP2 + . . . + weight n×SNPn), where n is the total number of

SNPs. Both un-weighted and weighted BMI-GRSs were calculated in which the weight is 1 for

all SNPs and the weight is the β coefficient of each individual SNP on BMI derived from

GIANT for the un-weighted and weighted GRS, respectively. The results of un-weighted and

weighted GRS were largely similar and we presented un-weighted BMI-GRS in the Results. To

examine the robustness of the results based on the BMI-GRS of our selected SNPs, we also cal-

culated the BMI-GRS based on 97 BMI-associated SNPs which reached genome-wide signifi-

cant levels (P< 5×10–8) in the GIANT BMI GWAS including up to 322,154 European

descents and 17,072 non-European descents [37].

Statistical analysis

Age, sex, smoking statuses, pack-years, BMI, and BMI categories were compared between lung

cancer statuses by student t-test and Chi-square test for categorical variables. All statistical

tests are two-sided. The analyses were performed using R (v2.6).

Association of BMI with smoking phenotypes

Linear regression model was applied for comparison of BMI among individuals with different

smoking categories (never-smokers, current smokers and ex-smokers) with adjustment for

age, sex, and study sites. Adjusted means of BMI of individuals with different smoking catego-

ries and their 95% confidence intervals (CIs) were calculated using the lm function in the sta-

tistical software R with a fixed intercept of zero. Additional stratification analyses by lung

cancer status were performed.

Association of the BMI-GRS with BMI and smoking phenotypes

Linear regression was also used to compare the BMI-GRS between different BMI categories

(underweight, <18.5; Normal, 18.5–24.9; Overweight, 25.0–29.9; and Obese,� 30) by adjust-

ing for age, sex, study sites, and top four genetic principal components. Although our analyses

were performed only for participants of European descent, study sites and top four genetic

principle components generated using common SNPs were included in the regression models

for BMI-GRS in order to further limit the effects of any possible cryptic population stratifica-

tion that might cause inflation of test statistics. Trend tests were performed by analyzing the

BMI categories as a continuous variable in the regression model. A similar regression analysis

was also performed to compare the BMI-GRS between individuals with different smoking cat-

egories (never-smokers, current-smokers, and ex-smokers). Partial correlation coefficients

between the BMI-GRS and pack-years of smoking were estimated by Pearson correlation coef-

ficients of their residuals from linear regression models after adjusting for age, sex, study sites,

and top four genetic principal components. Additional stratification analyses were performed

by lung cancer status.

Identifying candidate pleiotropic SNPs for BMI and smoking phenotypes

We used a causal network inference model to identify possible pleiotropic SNPs for both BMI/

pack-years and BMI/smoking status (smokers versus non-smokers), respectively.[38] We
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describe the approach here using BMI and pack-years as an example. A similar approach was

used to identify pleiotropic SNPs for BMI and remaining smoking traits. Specifically, we mod-

eled 12 possible directed acyclic graphs (DAGs) of the genotype value of a SNP on BMI and/or

pack-years (Fig 1). We classified these DAGs into four categories: (1) the SNP did not have

effects on either BMI or pack-years, (2) the SNP had direct effects on BMI, but not pack-years,

(3) the SNP had direct effects on pack-years, but not BMI, and (4) the SNP had pleiotropic

effects on both BMI and pack-years.

Based on a given DAG, we fit two linear regression models for BMI and pack-years, respec-

tively, with adjustment for sex, age, study sites, and genetic principal components (PCs). For

example, two linear regression models for the DAG of SNP! pack-years! BMI (DAG 8

with gentic effects on pack-years only) are

BMI � Ageþ Sexþ Study Sitesþ PCsþ Pack years;

Pack years � Ageþ Sexþ Study Sitesþ PCsþ SNP:

To identify the model that was the most supported by the data, we calculated AIC for each

DAG

� 2 loglik ðRegression Model 1Þ � 2 loglik ðRegression Model 2Þ þ 2�number of edges:

We then compared the minimum AIC values of four categories. SNPs with at least 2 of the

minimum AIC value of category 4 (model 10, 11, or 12) less than other categories were further

examined for their association with pack-years. Similar analyses were performed for smoking

status using logistic regression. Those SNPs that achieved a nominal statistical significance

(p<0.05) were considered as candidate pleiotropic SNPs, and further validated for their associ-

ations with ever-smoking using the independent database from TAG (The Tobacco, Alcohol

and Genetics) consortium.(https://www.med.unc.edu/pgc/results-and-downloads)

Fig 1. Twelve possbile directed acyclic graphs (DAGs) of one SNP, BMI and pack-years (PY) of

smoking. Possible DAGs between one SNP, BMI and PY. The DAGs are categorized into 4 groups. SNPs in

Category 1 (DAGs of 1, 2, and 3) do not have effects on either BMI or pack-years. SNPs in Category 2 (DAGs

of 4, 5, and 6) have direct effects on BMI, but not PY. SNPs in Category 3 (DAGs of 7, 8, and 9) have direct

effects on PY, but not BMI. SNPs in Category 4 (DAGs of 10, 11, and 12) have pleiotropic effects on BMI and

PY.� represents models that are not differentiable.

https://doi.org/10.1371/journal.pone.0185660.g001
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Results

Characteristics of the study population

In our analysis, 17,037 subjects of European descent from 17 study sites had full information

on both BMI and smoking status, and other important covariates (age, sex, study sites, and

lung cancer status). As expected, compared to the controls, lung cancer cases were older, had a

higher proportion of smokers, and were slightly leaner (Table 1).

Association of BMI and smoking variables

We compared BMI levels among never-smokers, ex-smokers, and current smokers. As expected

and as compared to never-smokers, ex-smokers had a significantly higher BMI (difference from

never-smokers = 0.39 kg/m2, p = 2.64×10−4), while current smokers were leaner (difference

from never-smokers = -1.08 kg/m2, p = 8.20×10−24) after adjustment for age, sex and study

sites. Such differences in BMI by smoking status were similar for cases and controls (Fig 2).

BMI and pack-years of smoking were positively correlated in both current smokers and ex-

smokers after adjustment for age, sex and study sites, and the correlations were stronger in ex-

smokers than those in current-smokers (Table 2). Specifically, the partial coefficient of pack-

years of smoking and BMI was 0.054 (95%CI 0.027–0.075) and 0.112 (95%CI 0.088–0.136) for

current smokers and ex-smokers, respectively. The correlations between BMI and pack-years

were similar for cases and controls.

Association of the BMI-GRS with BMI

We first confirmed if the BMI-GRS based on 241 SNPs identified in GIANT was associated

with BMI in the OncoArray Project population. Comparing the BMI-GRS of individuals in

different BMI categories with adjustment for age, sex, study sites, genetic principal compo-

nents, smoking types, and pack-years (Fig 3), we found that the BMI-GRS significantly

increased from the categories underweight (BMI<18.5), to normal weight (BMI 18.5–24.9), to

Table 1. Characteristics of 17,037 European-descent subjects in the OncoArray Project and epidemi-

ologic data.

Cases Controls P-values

N 9,633 7,404

Male (%) 5,461 (56.7) 42,71 (57.7) 0.199

Age (sd) 65.2 (10.2) 61.1 (10.1) <0.001

Smoking type (%)

Never-smokers 1,101 (11.4) 2,353 (31.8) <0.001

Ex-smokers 3,934 (40.8) 2,782 (37.6)

Current smokers 4,598 (47.7) 2,269 (30.6)

Pack-years of smoking among smokers (sd) 47.8 (31.3) 33.1 (26.5) <0.001

BMI, kg/m2 (sd) 26.3 (4.9) 26.9 (4.8) <0.001

BMI categories (kg/m2) <0.001

Under weight (<18.5) 268 (2.8) 66 (0.9)

Normal (18.5–24.9) 3,862 (40.1) 2,708 (36.6)

Over weight (25–29.9) 3,684 (38.2) 3,154 (42.6)

Obese (�30) 1,819 (18.9) 1,476 (19.9)

The Basic characteristics of the subjects were described as mean (sd) for continuous variables, and number

(proportion, %) for category variables. The p-values were obtained by student t-test for continuous variables

and Çhi-square test for category variables.

https://doi.org/10.1371/journal.pone.0185660.t001
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overweight (BMI 25–29.9), and to obese (BMI�30) with ptrend = 8.40×10−74. Similar associa-

tions between the BMI-GRS and BMI categories were found in cases and controls (ptrend =

1.75×10−39 and p trend = 5.96×10−37 for cases and controls, respectively).

Association of the BMI-GRS with smoking phenotypes

The BMI-GRS of smokers that include both ex-smokers and current smokers, was first com-

pared with that of never-smokers. Smokers had a significantly higher BMI-GRS than never-

Cases Controls Total

Smoking Status

B
M

I

20
25

30
35

never-smokers ex-smokers current smokers

Fig 2. Adjusted means of BMI (95% CIs) for never-smokers, ex-smokers, and current smokers with adjustment for age, sex, and study sites. Bar

represents mean±s.d.

https://doi.org/10.1371/journal.pone.0185660.g002

Table 2. Partial correlations between BMI and pack-years of smoking by smoking status.

Current Smokers Ex-smokers

n Coef 95%CI P N Coef 95%CI P

All* 6,577 0.054 0.027–0.075 <0.001 6,245 0.112 0.088–0.136 <0.001

Cases** 4,396 0.052 0.023–0.082 <0.001 3,682 0.106 0.074–0.138 <0.001

Controls** 2,181 0.072 0.030–0.114 <0.001 2,563 0.140 0.102–0.178 <0.001

A table for the partial correlation coefficients between BMI and pack-years in smokers.

* For all subjects, the analysis was adjusted for age, sex, study sites and disease status.

** For cases and controls, the analyses were adjusted for age, sex, and study sites.

https://doi.org/10.1371/journal.pone.0185660.t002
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smokers (regression coefficient of ex-smokers: 0.516, p-value = 0.016) before adjustment for

BMI. After further adjustment for BMI, the association between the BMI-GRS and smoking

was strengthened (regression coefficient 0.545, p-value = 0.010). Ex-smokers and current

smokers were then compared separately with that of never-smokers. Ex-smokers and current

smokers had a similar BMI-GRS (regression coefficient 0.059, p-value = 0.750), but both of

them had a significantly higher BMI-GRS than never-smokers (regression coefficient of ex-

smokers: 0.490, p-value = 0.032; regression coefficient of current smokers: 0.549, p-value =

0.021) before adjustment for BMI. After further adjustment for BMI, the association between

the BMI-GRS and current smoking was strengthened (regression coefficient 0.838, p-value =

3.9×10−4), while the association between the BMI-GRS and ex-smoking was somewhat attenu-

ated (regression coefficient 0.321, p-value = 0.157). The association patterns based on different

BMI-GRSs were largely consistent (S2 Table). The results were also similar when analyses were

stratified by lung cancer status.

There was also a significantly positive association between the BMI-GRS and pack-years of

smoking among smokers (Table 3). The associations were similar in cases and controls. After

stratification by smoking status, the association between the BMI-GRS and pack-years tended

to be stronger in current smokers (correlation coefficient 0.024, p = 0.049) than in ex-smokers

Cases Controls Total

BMI categories

<18.5 18.5−24.9 25−29.9 >=30

B
M

I−
G

R
S

30

40

50

60

70

80

p= 1.75x10−39 p= 5.96x10−37 p= 8.40x10−74

Fig 3. Adjusted means of the BMI-GRS (95% CIs) by BMI category after adjustment for age, sex, study sites, genetic principal components,

smoking status, and pack-years of smoking. Bar represents mean±s.d.

https://doi.org/10.1371/journal.pone.0185660.g003
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(correlation coefficient 0.009, p = 0.472). The results based on different BMI-GRSs were largely

consistent (S3 Table).

Identifying pleiotropic SNPs for both BMI and smoking status

The above analyses suggested that among the 241 SNPs composed of the BMI-GRS (or in link-

age disequilibrium with the 241 SNPs), there may be some pleiotropic SNPs that have direct

effects on smoking and BMI. To identify the pleiotropic loci (DAGs 10, 11, or 12 in Fig 1),

we first used network inference to determine the possible causal models of 241 SNPs. In total,

five SNPs were classfied into category four to be pleiotropic for both BMI and pack-years of

smoking, and seven SNPs were classfied into category four to be pleiotropic for both BMI and

smoking by network inference. We then examined the associations of each of these SNPs with

BMI and pack-years of smoking (or smoking status) with adjustment for age, sex, study sites,

genetic principal components and lung cancer disease status. (Fig 4). There were four and

three SNPs associated with pack-years of smoking and smoking status with p<0.05, respec-

tively (Table 4). The SNPs classified as Category 4 and associated with smoking status or pack-

years with a nominal significance (p<0.05) were considered as candidate SNPs of pleiotropy.

The associations of these candidate pleiotropic SNPs with BMI were quite similar with and

without adjustment for pack-years or smoking status (S4 Table). We validated these SNPs

using data from the TAG consortium. Of the total of seven candidate pleiotropic SNPs for

BMI and pack-years or smoking status, rs11030104 (BDNF) was associated with ever-smoking

in TAG data after Bonferroni correction (p = 0.002), and rs13021737 (TMEM18), rs11583200

(ELAVL4) and rs6990042 (GCZ) achieved a nominal significance of 0.05 (p-values were 0.018,

0.008, and 0.043, respectively). Another interesting SNP that achieved a nominal significance

in TAG data (p = 0.020) was rs12016871 (MTIF3), but it did not achieve statistical significance

with smoking status in the OncoArray Project dataset (p = 0.161).

Discussion

In summary, we calculated the BMI-GRS for subjects who had OncoArray data of ILCCO

using 241 common SNPs potentially associated with BMI and demonstrated that the BMI-GRS

was associated with increased propensity to smoke as well as elevated pack-years after adjust-

ing for the potential confounding effects of BMI. These results were consistent with those from

a previous study in Iceland in which the GRS of 32 SNPs identified in GWAS was found to be

Table 3. Partial correlations between pack-years of smoking and BMI-GRS.

Category* Coef 95%CI p-value

Total (n = 12,822)** 0.022 0.004–0.039 0.014

Stratified by smoking categories**

Current smokers (n = 6,575) 0.024 0.0001–0.048 0.049

Ex-smokers (n = 6,245) 0.009 -0.016–0.034 0.472

Stratified by disease status***

Cases (n = 8,078) 0.018 -0.004–0.040 0.109

Controls (n = 4,744) 0.031 0.003–0.060 0.030

*The partial correlation coefficients between BMI-GRS and pack-years were calculated in smokers.

** The correlation coefficients were adjusted for age, sex, BMI, study sites, genetic principal components,

and disease status.

*** The correlation coefficients were adjusted for age, sex, BMI, study sites, and genetic principal

components.

https://doi.org/10.1371/journal.pone.0185660.t003
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associated with two smoking phenotypes, smoking initiation and the number of cigarettes

smoked per day. The observed associations between the BMI-GRS and smoking variables

could not be due to confounding of BMI, because the association of the BMI-GRS with smok-

ing varaibles remained statistically significant after adjustment for BMI. Moverover, the

BMI-GRS was positively associated with current smoking, which was opposite to what would

be expected if the association between BMI-GRS and current smoking was due to the con-

founding effects of BMI, as current smoking and BMI was negatively correlated. Instead, the

associations between BMI-GRS and smoking indicate that some loci that composed the

BMI-GRS may directly contribute to smoking behavior, and may have pleiotropic effects on

both BMI and smoking variables.

Using causal network inference, we identified 4 loci that may have pleitropic effects on BMI

and pack-years of smoking and 3 loci with potential pleitropic effects on BMI and smoking

status. Among them, one locus (BDNF) achieved a statistical significance after Bonferroni cor-

rection (p<0.007), and three loci (TMEM18, ELAVL4, and SGCZ) achieved a nominal signifi-

cance (p<0.05). in ever-smoking data from the TAG consortium. The result of BDNF (brain

derived neurotrophic factor) locus on chromosome 11 was consistent with prior studies that

−2 0 2 4 6

−
4

−
2

0
2

4

−2 0 2 4 6

−
4

−
2

0
2

4

Z
 s

co
re

 fo
r 

P
ac

k-
ye

ar
 o

f s
m

ok
in

g

Z
 s

co
re

 fo
r 

E
ve

r-
sm

ok
in

g

Z score for BMI Z score for BMI

Fig 4. The Z statistics for associations of 241 SNPs with BMI, pack-years of smoking, and smoking. The vertical axis represents Z scores for

associations of SNPs with pack-years of smoking or smoking. The horizontal axis represents Z scores for associations of SNPs with BMI. All Z scores were

adjusted by age, sex, study sites, genetic principal components and lung cancer disease status. The blue dots were SNPs that were determined to be

pleiotropic with further validation in TAG.

https://doi.org/10.1371/journal.pone.0185660.g004

Common genetic causes of smoking and BMI

PLOS ONE | https://doi.org/10.1371/journal.pone.0185660 September 28, 2017 10 / 17

https://doi.org/10.1371/journal.pone.0185660.g004
https://doi.org/10.1371/journal.pone.0185660


T
a
b

le
4
.

S
N

P
s

w
it

h
p

le
io

tr
o

p
ic

e
ff

e
c
ts

o
n

B
M

I
a
n

d
s
m

o
k
in

g
v
a
ri

b
le

s
a
m

o
n

g
2
4
1

S
N

P
s

c
o

m
p

o
s
e
d

o
f
th

e
B

M
I-

G
R

S
.

S
N

P
c
h

r
p

o
s
it

io
n

G
e
n

e
O

n
c
o

A
rr

a
y

P
ro

je
c
t

G
IA

N
T

T
A

G

A
s
s
o

c
ia

ti
o

n

d
ir

e
c
ti

o
n

w
it

h

s
m

o
k
in

g

p
h

e
n

o
ty

p
e

p
-v

a
lu

e
o

f

a
s
s
o

c
ia

ti
o

n

w
it

h
s
m

o
k
in

g

v
a
ri

a
b

le

A
s
s
o

c
ia

ti
o

n

d
ir

e
c
ti

o
n

w
it

h
B

M
I

p
-v

a
lu

e

a
s
s
o

c
ia

ti
o

n

w
it

h
B

M
I

A
s
s
o

c
ia

ti
o

n

D
ir

e
c
ti

o
n

w
it

h

B
M

I

p
-v

a
lu

e

a
s
s
o

c
ia

ti
o

n

w
it

h
B

M
I

A
s
s
o

c
ia

ti
o

n

d
ir

e
c
ti

o
n

w
it

h

e
v
e
r-

s
m

o
k
in

g

p
-v

a
lu

e

a
s
s
o

c
ia

ti
o

n

w
it

h
e
v
e
r-

s
m

o
k
in

g

S
N

P
s

p
le

io
tr

o
p

ic
fo

r
p

a
c
k
-y

e
a
rs

a
n

d
B

M
I

rs
1
3
0
2
1
7
3
7

2
6
3
2
3
4
8

T
M

E
M

1
8

P
o
s
it
iv

e
3
.0

e
-4

P
o
s
it
iv

e
5
.0

E
-0

8
P

o
s
it
iv

e
5
.4

e
-5

4
P

o
s
it
iv

e
0
.0

1
8

rs
1
5
2
8
4
3
5

2
1
8
1
5
5
0
9
6
2

A
C

0
0
9
4
7
8
.1

P
o
s
it
iv

e
6
.4

e
-3

P
o
s
it
iv

e
0
.0

4
3

P
o
s
it
iv

e
4
.8

e
-0

9
N

e
g
a
ti
v
e

0
.9

3
6

rs
1
1
5
8
3
2
0
0

1
5
0
5
5
9
8
2
0

E
L
A

V
L
4

P
o
s
it
iv

e
0
.0

1
1

P
o
s
it
iv

e
0
.0

3
6

P
o
s
it
iv

e
6
.0

e
-0

9
P

o
s
it
iv

e
0
.0

0
8

rs
3
8
8
8
1
9
0

1
6

2
8
8
8
9
4
8
6

A
T

P
2
A

1
P

o
s
it
iv

e
0
.0

3
4

P
o
s
it
iv

e
0
.0

3
8

P
o
s
it
iv

e
3
.5

e
-2

5
N

e
g
a
ti
v
e

0
.6

0
6

rs
1
1
1
6
5
6
4
3

1
9
6
9
2
4
0
9
7

P
T

B
P

2
P

o
s
it
iv

e
0
.1

3
3

P
o
s
it
iv

e
0
.0

0
1

P
o
s
it
iv

e
1
.4

e
-1

3
P

o
s
it
iv

e
0
.2

8
2

S
N

P
s

p
le

io
tr

o
p

ic
fo

r
s
m

o
k
in

g
s
ta

tu
s

a
n

d
B

M
I

rs
1
1
0
3
0
1
0
4

1
1

2
7
6
8
4
5
1
7

B
D

N
F

P
o
s
it
iv

e
2
.4

e
-4

P
o
s
it
iv

e
0
.0

3
8

P
o
s
it
iv

e
6
.7

e
-3

0
P

o
s
it
iv

e
2
.0

e
-4

rs
6
9
9
0
0
4
2

8
1
4
1
7
3
9
7
4

S
G

C
Z

P
o
s
it
iv

e
0
.0

3
1

P
o
s
it
iv

e
0
.1

0
1

P
o
s
it
iv

e
4
.5

e
-0

7
P

o
s
it
iv

e
0
.0

4
5

rs
9
2
7
5
5
9
5

6
3
2
6
8
1
3
5
5

X
X

b
a
c
-

B
P

G
2
5
4
F

2
3
.7

P
o
s
it
iv

e
0
.0

4
3

P
o
s
it
iv

e
0
.0

3
1

P
o
s
it
iv

e
5
.6

e
-0

6
P

o
s
it
iv

e
0
.2

1
4

rs
7
5
5
0
7
1
1

1
1
1
0
0
8
2
8
8
6

G
P

R
6
1

P
o
s
it
iv

e
0
.0

9
4

P
o
s
it
iv

e
0
.0

2
6

P
o
s
it
iv

e
5
.1

e
-1

4
P

o
s
it
iv

e
0
.5

9
4

rs
9
2
9
6
4
1

2
5
8
7
9
2
3
7
7

L
IN

C
0
1
1
2
2

P
o
s
it
iv

e
0
.1

3
6

P
o
s
it
iv

e
0
.0

0
4

P
o
s
it
iv

e
5
.1

e
-0

8
P

o
s
it
iv

e
0
.7

6
1

rs
1
2
0
1
6
8
7
1

1
3

2
8
0
1
7
7
8
2

M
T

IF
3

N
e
g
a
ti
v
e

0
.1

6
1

P
o
s
it
iv

e
0
.0

0
4

P
o
s
it
iv

e
9
.3

e
-1

1
N

e
g
a
ti
v
e

0
.0

2
0

rs
1
2
2
2
0
3
7
5

1
0

1
0
4
9
0
1
4
9
1

N
T

5
C

2
P

o
s
it
iv

e
0
.1

6
8

P
o
s
it
iv

e
0
.0

1
0

P
o
s
it
iv

e
1
.8

e
-0

9
P

o
s
it
iv

e
0
.1

4
2

T
h
e

S
N

P
s

p
re

s
e
n
te

d
in

th
is

ta
b
le

w
e
re

c
la

s
s
if
ie

d
a
s

C
a
te

g
o
ri
y

fo
u
r
(D

A
G

s
o
f
1
0
,1

1
,1

2
in

F
ig

1
).

T
h
e

a
s
s
o
c
ia

ti
o
n

d
ir
e
c
ti
o
n
s

a
n
d

p
-v

a
lu

e
s

o
f
th

e
s
e

S
N

P
s

w
it
h

B
M

I
in

G
IA

N
T

a
n
d

w
it
h

e
v
e
r-

s
m

o
k
in

g
in

T
A

G
a
re

a
ls

o
p
re

s
e
n
te

d
.
S

N
P

s
in

th
e

s
h
a
d
o
w

w
e
re

s
ta

ti
s
ti
c
a
lly

s
ig

n
fi
c
a
n
t
fo

r
th

e
a
s
s
o
c
ia

ti
o
n

w
it
h

p
a
c
k
-y

e
a
rs

o
f
s
m

o
k
in

g
o
r
s
m

o
k
in

g
s
ta

tu
s

in
th

e
O

n
c
o
A

rr
a
y

P
ro

je
c
t

p
o
p
u
la

ti
o
n

(p
<0

.0
5
)
a
n
d

w
it
h

e
v
e
r-

s
m

o
k
in

g
d
a
ta

o
f
T

A
G

c
o
n
s
o
rt

iu
m

w
it
h

a
n
o
m

in
a
ls

ig
n
if
ic

a
n
c
e

o
f
p
<0

.0
5
.

h
tt

p
s:

//
d
o
i.o

rg
/1

0
.1

3
7
1
/jo

u
rn

al
.p

o
n
e.

0
1
8
5
6
6
0
.t
0
0
4

Common genetic causes of smoking and BMI

PLOS ONE | https://doi.org/10.1371/journal.pone.0185660 September 28, 2017 11 / 17

https://doi.org/10.1371/journal.pone.0185660.t004
https://doi.org/10.1371/journal.pone.0185660


had shown strong associations of this locus with BMI [18,39] and various smoking pheno-

types.[17] Evidence from epidemiological studies [40] and animal studies [41] also indicate

associations of BDNF gene with other substance abuse related disorders, eating disorders, and

schizophrenia. The protein BDNF belongs to a neurotrophin family growth factors [42] and is

the most abundant of the neurotrophins in the brain with high concentrations in the hippo-

campus and cerebral cortex.[43,44] BDNF expression in the brain is regulated by the seroto-

nergic[45] and the dopaminergic[46] neurotransmitter systems which are known to be

involved in nicotine use, addictive behaviors, mood and food intake. [47–50]

The TMEM18 (transmembrane protein 18) locus is another known GWAS locus of BMI.

[19] The Icelandic study that examined 32 GWAS loci of BMI had found significant associa-

tions of TMEM18 with both smoking initiation and cigarettes per day, an observation that was

consistent with what we found [31]. The function of TMEM18 is largely unknown. TMEM18 is

highly expressed in neural tissue and has been hypothesized to play a role in energy homeosta-

sis via neural pathways controlling food intake [51].

To our knowledge, both ELAVL4 (ELAV Like RNA Binding Protein 4) and SCGZ (Sarco-

glycan zeta) loci have not been associated with smoking bahavior in GWAS. We examined the

GTEx database, and both ELAVL4 ad SGCZ are highly expressed in multiple brain tissues (Fig

5). The ELAVL4 gene is known to be associated with hallucinogen abuse, paraneoplastic

neurologic disorders, and Parkinson disease [52]. Although there was suggestive evidence of

association between SCGZ locus and BMI, it has not been considered as the GWAS BMI locus;

[20] however, a previous copy number variation (CNV) analysis in two African American pop-

ulations had identified a CNV overlapping with SGCZ gene region to be signficantly associated

with BMI.[53] Previously, SGCZ and other genes invovled in cell adhesion processes were

linked to addiction vulnerability.[54] Cell adhesion mechanisms are central for properly estab-

lishing and regulating neuronal connections during development and can play major roles in

mnemonic processes in adults [55–57]. In addition to reward processes, there are growing

bodies of data implicating that cell-adhesion and related memory-like processes play impor-

tant roles in substance dependence.[54,55,57,58]

Future studies of identification of pleiotropic genes on both BMI and smoking phenotypes

may focus on pathways of those candidate loci, in particular BDNF gene. Among 241 SNPs,

there was one SNP (rs3800229) in the locus of FOXO3 that can be inactivated by signaling path-

ways acctived by neurotrophins (such as BDNF).[59,60] This SNP was assciated with pack-years

in the OncoArray Project data and ever-smoking in TAG data with a nominal signficance of

p<0.05 (data not shown), but this SNP did not achived the cut-off to be classified into the pleio-

tropic categoriy. Nevertheless, our finding on associatons of BDNF suggests the regulatory path-

way of BDNF and its other target loci may play a role in both smoking behavior and BMI.

In general, genetic variants, BMI and smoking phenotypes are in complex relationships. In

addtion to pleiotropic effects of genetic varaints on BMI and smoking phentoypes, there may

also be interactions between genetic variants and smokings on BMI. For example, a recent

study identified several novel BMI loci by accounting for SNP-smoking interactions. [61] In

the presence of such interaction, one would also expect assoications between a SNP and smok-

ing status in BMI-based ascertained samples, although the SNPs is not associated with smoking

status in the general population. A future study fully accounting for these relationships may

reveal additional novel loci of obesity and smoking phenotypes.

In summary, we identified four potential loci that may have pleiotropic effects on BMI and

smoking traits. All four potential pleiotropic loci on BMI and smoking phenotypes are

expressed in the human brain, and prior experimental evidence indicates that these genes are

invovled in relevant complex brain functions, e.g. brain’s reward circutry and neural cell adhe-

sion mechanisms. The biological functions of these genes support our findings. Future studies

Common genetic causes of smoking and BMI

PLOS ONE | https://doi.org/10.1371/journal.pone.0185660 September 28, 2017 12 / 17

http://www.malacards.org/card/hallucinogen_abuse
http://www.malacards.org/card/paraneoplastic_neurologic_disorders
http://www.malacards.org/card/paraneoplastic_neurologic_disorders
https://doi.org/10.1371/journal.pone.0185660


of confirmation of these loci may suggest targets for searching new drugs for controlling smok-

ing and eating behaviors. Sequencing these genes and other genes in relevant pathways may be

helpful for identifying funtional variants that have pleiotropic effects on both BMI and smok-

ing behavior.
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