110 research outputs found

    Progress of the ECHo SDR Readout Hardware for Multiplexed MMCs

    Get PDF
    The electron capture in 163^{163}Holmium (ECHo) experiment seeks to achieve sub-eV sensitivity of the electron neutrino mass through calorimetric decay spectroscopy of 163^{163}Ho in large arrays of cryogenic magnetic microcalorimeters (MMCs). Microwave SQUID multiplexing serves to efficiently increase the number of readout channels, thus calorimeters per array and ultimately per cryostat. A corresponding frequency multiplexing room temperature software-defined radio (SDR) system is in development to enable the readout of this increased number of MMCs per cable. The SDR consists of a custom FPGA platform that provides signal generation and analysis capabilities, as well as tailored signal conversion and analog conditioning front end electronics that enable the room-temperature-to-cryogenic interface. Ultimately, the system will read out 400 multiplexer channels with double pixel detectors through a bandwidth of 4 GHz (IEEE C band). As high-resolution data converters are limited in sample rate, the C-band is split into five sub-bands using a two-stage mixing method. In this contribution, a prototype of the heterodyne RF design is presented. It comprises one of the five 800 MHz sub-bands for a target frequency range between 4 and 8 GHz. Furthermore, the second version of the A/D converter stage is presented, capable of generating and digitizing up to five complex basebands using 1 GSs−1^{-1} converters, the reference clocks and a flux-ramp signal. We will show first results of their single and combined characterization in the lab. The current state of the prototype hardware enables preliminary measurements, only limited in bandwidth and with slightly higher noise. Potential improvements could be derived and will be implemented in the full bandwidth, 5-sub-band RF PCB design

    Evaluating the RFSoC as a Software-Defined Radio readout system for Magnetic Microcalorimeters

    Get PDF
    Arrays of superconducting sensors enable particle spectrum analysis with superior energy resolution. To efficiently acquire data from frequency multiplexed sensors, the readout electronics operating at room temperature must perform multiple tasks, such as low-noise probe tone generation, frequency demodulation, and data decimation. We designed a Software-Defined Radio (SDR) system composed of an MPSoC board, an analogue-digital conversion stage, and a radio frequency front-end mixing stage to meet the system requirements of 4 GHz instantaneous bandwidth and real-time data analysis. Nevertheless, utilising a Radio Frequency System-on-Chip (RFSoC) could simplify the overall system by integrating the conversion stage. This work investigates the applicability of RFSoCs for the aforementioned use case

    Nat Struct Mol Biol

    Get PDF
    As translation proceeds, the nascent polypeptide chain passes through a tunnel in the large ribosomal subunit. Although this ribosomal exit tunnel was once thought only to be a passive conduit for the growing nascent chain, accumulating evidence suggests that it may in fact play a more active role in regulating translation and initial protein folding events. Here we have determined single-particle cryo-electron microscopy reconstructions of eukaryotic 80S ribosomes containing nascent chains with high alpha-helical propensity located within the exit tunnel. The maps enable direct visualization of density for helices as well as allowing the sites of interaction with the tunnel wall components to be elucidated. In particular regions of the tunnel, the nascent chain adopts distinct conformations and establishes specific contacts with tunnel components, both ribosomal RNA and proteins, that have been previously implicated in nascent chain-ribosome interaction

    SDR-Based Readout Electronics for the ECHo Experiment

    Get PDF
    Due to their excellent energy resolution, the intrinsically fast signal rise time, the huge energy dynamic range, and the almost ideally linear detector response, metallic magnetic calorimeters (MMC)s are very well suited for a variety of applications in physics. In particular, the ECHo experiment aims to utilize large-scale MMC-based detector arrays to investigate the mass of the electron neutrino. Reading out such arrays is a challenging task which can be tackled using microwave SQUID multiplexing. Here, the detector signals are transduced into frequency shifts of superconducting microwave resonators, which can be deduced using a high-end software-defined radio (SDR) system. The ECHo SDR system is a custom-made modular electronics, which provides 400 channels equally distributed in a 4 to 8 GHz frequency band. The system consists of a superheterodyne RF frequency converter with two successive mixers, a modular conversion, and an FPGA board. For channelization, a novel heterogeneous approach, utilizing the integrated digital down conversion (DDC) of the ADC, a polyphase channelizer, and another DDC for demodulation, is proposed. This approach has excellent channelization properties while being resource-efficient at the same time. After signal demodulation, on-FPGA flux-ramp demodulation processes the signals before streaming it to the data processing and storage backend

    White-light photoluminescence and photoactivation in cadmium sulfide embedded in mesoporous silicon dioxide templates studied by confocal laser scanning microscopy

    Get PDF
    This is the author's version of a work that was accepted for publication in Journal of colloid and interface science. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Journal of colloid and interface science, [147, 1, (2013)] DOI10.1016/j.jcis.2013.06.022)SBA-15 and SBA-16 silica templates have been infiltrated with CdS by means of nanocasting using a hybrid precursor. The morphology and structure of both the SiO2@CdS nanocomposites and the silica-free CdS replicas have been characterized. The three-dimensional nanocrystalline CdS networks embedded in SBA-15 and SBA-16 silica templates exhibit broad photoluminescence (PL) spectra over the entire visible range, together with enhanced PL intensity compared to silica-free CdS replicas. These effects result from the role silica plays in passivating the surface of the CdS mesostructures. Furthermore, photoactivation is eventually observed during continuous illumination because of both structural and chemical surface odifications. Owing to this combination of properties, these materials could be appealing for solid-state lighting, where ultra-bright near-white PL emission is indispensable

    Nanoscale Confinement and Fluorescence Effects of Bacterial Light Harvesting Complex LH2 in Mesoporous Silicas

    Get PDF
    Many key chemical and biochemical reactions, particularly in living cells, take place in confined space at the mesoscopic scale. Toward understanding of physicochemical nature of biomacromolecules confined in nanoscale space, in this work we have elucidated fluorescence effects of a light harvesting complex LH2 in nanoscale chemical environments. Mesoporous silicas (SBA-15 family) with different shapes and pore sizes were synthesized and used to create nanoscale biomimetic environments for molecular confinement of LH2. A combination of UV-vis absorption, wide-field fluorescence microscopy, and in situ ellipsometry supports that the LH2 complexes are located inside the silica nanopores. Systematic fluorescence effects were observed and depend on degree of space confinement. In particular, the temperature dependence of the steady-state fluorescence spectra was analyzed in detail using condensed matter band shape theories. Systematic electronic-vibrational coupling differences in the LH2 transitions between the free and confined states are found, most likely responsible for the fluorescence effects experimentally observed

    Structure of the pre-60S ribosomal subunit with nuclear export factor Arx1 bound at the exit tunnel

    Get PDF
    Pre-ribosomal particles evolve in the nucleus through transient interaction with biogenesis factors, before export to the cytoplasm. Here, we report the architecture of the late pre-60S particle purified from Saccharomyces cerevisiae through Arx1, a nuclear export factor with structural homology to methionine aminopeptidases, or its binding partner Alb1. Cryo-electron microscopy reconstruction of the Arx1-particle at 11.9 Ã… resolution reveals regions of extra densities on the pre-60S particle attributed to associated biogenesis factors, confirming the immature state of the nascent subunit. One of these densities could be unambiguously assigned to Arx1. Immuno-electron microscopy and UV cross-linking localize Arx1 close to the ribosomal exit tunnel in direct contact with ES27, a highly dynamic eukaryotic rRNA expansion segment. The binding of Arx1 at the exit tunnel may position this export factor to prevent premature recruitment of ribosome-associated factors active during translation

    Delivery modulation in silica mesoporous supports via alkyl chain pore outlet decoration

    Full text link
    This article focuses on the study of the release rate in a family of modified silica mesoporous supports. A collection of solids containing ethyl, butyl, hexyl, octyl, decyl, octadecyl, docosyl, and triacontyl groups anchored on the pore outlets of mesoporous MCM-41 has been prepared and characterized. Controlled release from pore voids has been studied through the delivery of the dye complex tris(2,2¿-bipyridyl)ruthenium(II). Delivery rates were found to be dependent on the alkyl chain length anchored on the pore outlets of the mesoporous scaffolding. Moreover, release rates follow a Higuchi diffusion model, and Higuchi constants for the different hybrid solids have been calculated. A decrease of the Higuchi constants was observed as the alkyl chain used to tune the release profile is longer, confirming the effect that the different alkyl chains anchored into the pore mouths exerted on the delivery of the cargo. Furthermore, to better understand the relation between pore outlets decoration and release rate, studies using molecular dynamics simulations employing force-field methods have been carried out. A good agreement between the calculations and the experimental observations was observed.Financial support from the Spanish Government (projects MAT2009-14564-C04-01 and MAT2009-14564-C04-04) and the Generalitat Valencia (project PROMETEO/2009/016) is gratefully acknowledged.Aznar Gimeno, E.; Sancenón Galarza, F.; Marcos Martínez, MD.; Martínez Mañez, R.; Stroeve, P.; Cano, J.; Amoros Del Toro, P. (2012). Delivery modulation in silica mesoporous supports via alkyl chain pore outlet decoration. Langmuir. 28:2986-2996. https://doi.org/10.1021/la204438jS298629962

    Mechanism of eIF6 release from the nascent 60S ribosomal subunit.

    Get PDF
    SBDS protein (deficient in the inherited leukemia-predisposition disorder Shwachman-Diamond syndrome) and the GTPase EFL1 (an EF-G homolog) activate nascent 60S ribosomal subunits for translation by catalyzing eviction of the antiassociation factor eIF6 from nascent 60S ribosomal subunits. However, the mechanism is completely unknown. Here, we present cryo-EM structures of human SBDS and SBDS-EFL1 bound to Dictyostelium discoideum 60S ribosomal subunits with and without endogenous eIF6. SBDS assesses the integrity of the peptidyl (P) site, bridging uL16 (mutated in T-cell acute lymphoblastic leukemia) with uL11 at the P-stalk base and the sarcin-ricin loop. Upon EFL1 binding, SBDS is repositioned around helix 69, thus facilitating a conformational switch in EFL1 that displaces eIF6 by competing for an overlapping binding site on the 60S ribosomal subunit. Our data reveal the conserved mechanism of eIF6 release, which is corrupted in both inherited and sporadic leukemias.Supported by a Federation of European Biochemical Societies Long term Fellowship (to FW), Specialist Programme from Bloodwise [12048] (AJW), the Medical Research Council [MC_U105161083] (AJW) and [U105115237] (RRK), Wellcome Trust strategic award to the Cambridge Institute for Medal Research [100140], Tesni Parry Trust (AJW), Ted’s Gang (AJW) and the Cambridge NIHR Biomedical Research Centre.This is the author accepted manuscript. The final version is available from Nature Publishing Group via http://dx.doi.org/10.1038/nsmb.311
    • …
    corecore