67 research outputs found

    Increasing effectiveness and equity in strengthening health research capacity using data and metrics: recent advances of the ESSENCE mechanism

    Get PDF
    Background: The ESSENCE on Health Research initiative established a Working Group on Review of Investments in 2018 to improve coordination and collaboration among funders of health research capacity strengthening. The Working Group comprises more than a dozen ESSENCE members, including diverse representation by geography, country income level, the public sector, and philanthropy. Objective: The overall goal of the Working Group is increased research on national health priorities as well as improved pandemic preparedness, and, ultimately, fewer countries with very limited research capacity. Methods: We developed a basic set of metrics for national health research capacity, assessed different models of coordination and collaboration, took a deeper dive into eight countries to characterize their national research capacity, and began to identify opportunities to better coordinate our investments. In this article, we summarize the presentations, discussions, and outcomes of our second annual (virtual) meeting, which had more than 100 participants representing funders, researchers, and other stakeholders from higher- and lower-income countries worldwide. Findings and conclusions: Presentations on the first day included the keynote speaker, Dr. Soumya Swaminathan, chief scientist of the World Health Organization (WHO), and updates on data and metrics for research capacity, which are critical to establish targets, road maps, and budgets. The second day focused on improving collaboration and coordination among funders and other stakeholders, the potential return on investment for health research, ongoing work to increase coordination at the country level, and examples of research capacity strengthening efforts in diverse health research areas from around the world. We concluded that an intentional data- and metric-driven approach to health research capacity strengthening, emphasizing coordination among funders, local leadership, and equitable partnerships and allocation of resources, will enhance the health systems of resource-poor countries as well as the world's pandemic preparedness

    Functional role of T-cell receptor nanoclusters in signal initiation and antigen discrimination

    Get PDF
    Antigen recognition by the T-cell receptor (TCR) is a hallmark of the adaptive immune system. When the TCR engages a peptide bound to the restricting major histocompatibility complex molecule (pMHC), it transmits a signal via the associated CD3 complex. How the extracellular antigen recognition event leads to intracellular phosphorylation remains unclear. Here, we used single-molecule localization microscopy to quantify the organization of TCR–CD3 complexes into nanoscale clusters and to distinguish between triggered and nontriggered TCR–CD3 complexes. We found that only TCR–CD3 complexes in dense clusters were phosphorylated and associated with downstream signaling proteins, demonstrating that the molecular density within clusters dictates signal initiation. Moreover, both pMHC dose and TCR–pMHC affinity determined the density of TCR–CD3 clusters, which scaled with overall phosphorylation levels. Thus, TCR–CD3 clustering translates antigen recognition by the TCR into signal initiation by the CD3 complex, and the formation of dense signaling-competent clusters is a process of antigen discrimination

    Hotspot autoimmune T cell receptor binding underlies pathogen and insulin peptide cross-reactivity

    Get PDF
    The cross-reactivity of T cells with pathogen- and self-derived peptides has been implicated as a pathway involved in the development of autoimmunity. However, the mechanisms that allow the clonal T cell antigen receptor (TCR) to functionally engage multiple peptide–major histocompatibility complexes (pMHC) are unclear. Here, we studied multiligand discrimination by a human, preproinsulin reactive, MHC class-I–restricted CD8+ T cell clone (1E6) that can recognize over 1 million different peptides. We generated high-resolution structures of the 1E6 TCR bound to 7 altered peptide ligands, including a pathogen-derived peptide that was an order of magnitude more potent than the natural self-peptide. Evaluation of these structures demonstrated that binding was stabilized through a conserved lock-and-key–like minimal binding footprint that enables 1E6 TCR to tolerate vast numbers of substitutions outside of this so-called hotspot. Highly potent antigens of the 1E6 TCR engaged with a strong antipathogen-like binding affinity; this engagement was governed though an energetic switch from an enthalpically to entropically driven interaction compared with the natural autoimmune ligand. Together, these data highlight how T cell cross-reactivity with pathogen-derived antigens might break self-tolerance to induce autoimmune disease

    Hidden in the Middle : Culture, Value and Reward in Bioinformatics

    Get PDF
    Bioinformatics - the so-called shotgun marriage between biology and computer science - is an interdiscipline. Despite interdisciplinarity being seen as a virtue, for having the capacity to solve complex problems and foster innovation, it has the potential to place projects and people in anomalous categories. For example, valorised 'outputs' in academia are often defined and rewarded by discipline. Bioinformatics, as an interdisciplinary bricolage, incorporates experts from various disciplinary cultures with their own distinct ways of working. Perceived problems of interdisciplinarity include difficulties of making explicit knowledge that is practical, theoretical, or cognitive. But successful interdisciplinary research also depends on an understanding of disciplinary cultures and value systems, often only tacitly understood by members of the communities in question. In bioinformatics, the 'parent' disciplines have different value systems; for example, what is considered worthwhile research by computer scientists can be thought of as trivial by biologists, and vice versa. This paper concentrates on the problems of reward and recognition described by scientists working in academic bioinformatics in the United Kingdom. We highlight problems that are a consequence of its cross-cultural make-up, recognising that the mismatches in knowledge in this borderland take place not just at the level of the practical, theoretical, or epistemological, but also at the cultural level too. The trend in big, interdisciplinary science is towards multiple authors on a single paper; in bioinformatics this has created hybrid or fractional scientists who find they are being positioned not just in-between established disciplines but also in-between as middle authors or, worse still, left off papers altogether

    Evaluating the Effects of SARS-CoV-2 Spike Mutation D614G on Transmissibility and Pathogenicity.

    Get PDF
    Global dispersal and increasing frequency of the SARS-CoV-2 spike protein variant D614G are suggestive of a selective advantage but may also be due to a random founder effect. We investigate the hypothesis for positive selection of spike D614G in the United Kingdom using more than 25,000 whole genome SARS-CoV-2 sequences. Despite the availability of a large dataset, well represented by both spike 614 variants, not all approaches showed a conclusive signal of positive selection. Population genetic analysis indicates that 614G increases in frequency relative to 614D in a manner consistent with a selective advantage. We do not find any indication that patients infected with the spike 614G variant have higher COVID-19 mortality or clinical severity, but 614G is associated with higher viral load and younger age of patients. Significant differences in growth and size of 614G phylogenetic clusters indicate a need for continued study of this variant

    Mitochondrial physiology

    Get PDF
    As the knowledge base and importance of mitochondrial physiology to evolution, health and disease expands, the necessity for harmonizing the terminology concerning mitochondrial respiratory states and rates has become increasingly apparent. The chemiosmotic theory establishes the mechanism of energy transformation and coupling in oxidative phosphorylation. The unifying concept of the protonmotive force provides the framework for developing a consistent theoretical foundation of mitochondrial physiology and bioenergetics. We follow the latest SI guidelines and those of the International Union of Pure and Applied Chemistry (IUPAC) on terminology in physical chemistry, extended by considerations of open systems and thermodynamics of irreversible processes. The concept-driven constructive terminology incorporates the meaning of each quantity and aligns concepts and symbols with the nomenclature of classical bioenergetics. We endeavour to provide a balanced view of mitochondrial respiratory control and a critical discussion on reporting data of mitochondrial respiration in terms of metabolic flows and fluxes. Uniform standards for evaluation of respiratory states and rates will ultimately contribute to reproducibility between laboratories and thus support the development of data repositories of mitochondrial respiratory function in species, tissues, and cells. Clarity of concept and consistency of nomenclature facilitate effective transdisciplinary communication, education, and ultimately further discovery

    Mitochondrial physiology

    Get PDF
    As the knowledge base and importance of mitochondrial physiology to evolution, health and disease expands, the necessity for harmonizing the terminology concerning mitochondrial respiratory states and rates has become increasingly apparent. The chemiosmotic theory establishes the mechanism of energy transformation and coupling in oxidative phosphorylation. The unifying concept of the protonmotive force provides the framework for developing a consistent theoretical foundation of mitochondrial physiology and bioenergetics. We follow the latest SI guidelines and those of the International Union of Pure and Applied Chemistry (IUPAC) on terminology in physical chemistry, extended by considerations of open systems and thermodynamics of irreversible processes. The concept-driven constructive terminology incorporates the meaning of each quantity and aligns concepts and symbols with the nomenclature of classical bioenergetics. We endeavour to provide a balanced view of mitochondrial respiratory control and a critical discussion on reporting data of mitochondrial respiration in terms of metabolic flows and fluxes. Uniform standards for evaluation of respiratory states and rates will ultimately contribute to reproducibility between laboratories and thus support the development of data repositories of mitochondrial respiratory function in species, tissues, and cells. Clarity of concept and consistency of nomenclature facilitate effective transdisciplinary communication, education, and ultimately further discovery

    A higher effort-based paradigm in physical activity and exercise for public health: making the case for a greater emphasis on resistance training

    Get PDF
    It is well known that physical activity and exercise is associated with a lower risk of a range of morbidities and all-cause mortality. Further, it appears that risk reductions are greater when physical activity and/or exercise is performed at a higher intensity of effort. Why this may be the case is perhaps explained by the accumulating evidence linking physical fitness and performance outcomes (e.g. cardiorespiratory fitness, strength, and muscle mass) also to morbidity and mortality risk. Current guidelines about the performance of moderate/vigorous physical activity using aerobic exercise modes focuses upon the accumulation of a minimum volume of physical activity and/or exercise, and have thus far produced disappointing outcomes. As such there has been increased interest in the use of higher effort physical activity and exercise as being potentially more efficacious. Though there is currently debate as to the effectiveness of public health prescription based around higher effort physical activity and exercise, most discussion around this has focused upon modes considered to be traditionally ‘aerobic’ (e.g. running, cycling, rowing, swimming etc.). A mode customarily performed to a relatively high intensity of effort that we believe has been overlooked is resistance training. Current guidelines do include recommendations to engage in ‘muscle strengthening activities’ though there has been very little emphasis upon these modes in either research or public health effort. As such the purpose of this debate article is to discuss the emerging higher effort paradigm in physical activity and exercise for public health and to make a case for why there should be a greater emphasis placed upon resistance training as a mode in this paradigm shift
    corecore