62 research outputs found

    Transcriptome and phenotypic analysis reveals Gata3-dependent signalling pathways in murine hair follicles

    Get PDF
    Abstract The transcription factor Gata3 is crucially involved in epidermis and hair follicle differentiation. Yet, little is known about how Gata3 co-ordinates stem cell lineage determination in skin, what pathways are involved and how Gata3 differentially regulates distinct cell populations within the hair follicle. Here, we describe a conditional Gata3-/- mouse (K14-Gata3-/-) in which Gata3 is specifically deleted in epidermis and hair follicles. K14-Gata3-/- mice show aberrant postnatal growth and development, delayed hair growth and maintenance, abnormal hair follicle organization and irregular pigmentation. After the first hair cycle, the germinative layer surrounding the dermal papilla was not restored; instead, proliferation was pronounced in basal epidermal cells. Transcriptome analysis of laser-dissected K14-Gata3-/- hair follicles revealed mitosis, epithelial differentiation and the Notch, Wnt and BMP signaling pathways to be significantly overrepresented. Elucidation of these pathways at the RNA and protein levels and physiologic endpoints suggests that Gata3 integrates diverse signaling networks to regulate the balance between hair follicle and epidermal cell fates

    The splicing factor XAB2 interacts with ERCC1-XPF and XPG for R-loop processing

    Get PDF
    RNA splicing, transcription and the DNA damage response are intriguingly linked in mammals but the underlying mechanisms remain poorly understood. Using an in vivo biotinylation tagging approach in mice, we show that the splicing factor XAB2 interacts with the core spliceosome and that it binds to spliceosomal U4 and U6 snRNAs and pre-mRNAs in developing livers. XAB2 depletion leads to aberrant intron retention, R-loop formation and DNA damage in cells. Studies in illudin S-treated cells and Csb(m/m) developing livers reveal that transcription-blocking DNA lesions trigger the release of XAB2 from all RNA targets tested. Immunoprecipitation studies reveal that XAB2 interacts with ERCC1-XPF and XPG endonucleases outside nucleotide excision repair and that the trimeric protein complex binds RNA:DNA hybrids under conditions that favor the formation of R-loops. Thus, XAB2 functionally links the spliceosomal response to DNA damage with R-loop processing with important ramifications for transcription-coupled DNA repair disorders

    Impaired Genome Maintenance Suppresses the Growth Hormone–Insulin-Like Growth Factor 1 Axis in Mice with Cockayne Syndrome

    Get PDF
    Cockayne syndrome (CS) is a photosensitive, DNA repair disorder associated with progeria that is caused by a defect in the transcription-coupled repair subpathway of nucleotide excision repair (NER). Here, complete inactivation of NER in Csb(m/m)/Xpa(−/−) mutants causes a phenotype that reliably mimics the human progeroid CS syndrome. Newborn Csb(m/m)/Xpa(−/−) mice display attenuated growth, progressive neurological dysfunction, retinal degeneration, cachexia, kyphosis, and die before weaning. Mouse liver transcriptome analysis and several physiological endpoints revealed systemic suppression of the growth hormone/insulin-like growth factor 1 (GH/IGF1) somatotroph axis and oxidative metabolism, increased antioxidant responses, and hypoglycemia together with hepatic glycogen and fat accumulation. Broad genome-wide parallels between Csb(m/m)/Xpa(−/−) and naturally aged mouse liver transcriptomes suggested that these changes are intrinsic to natural ageing and the DNA repair–deficient mice. Importantly, wild-type mice exposed to a low dose of chronic genotoxic stress recapitulated this response, thereby pointing to a novel link between genome instability and the age-related decline of the somatotroph axis

    Delayed and Accelerated Aging Share Common Longevity Assurance Mechanisms

    Get PDF
    Mutant dwarf and calorie-restricted mice benefit from healthy aging and unusually long lifespan. In contrast, mouse models for DNA repair-deficient progeroid syndromes age and die prematurely. To identify mechanisms that regulate mammalian longevity, we quantified the parallels between the genome-wide liver expression profiles of mice with those two extremes of lifespan. Contrary to expectation, we find significant, genome-wide expression associations between the progeroid and long-lived mice. Subsequent analysis of significantly over-represented biological processes revealed suppression of the endocrine and energy pathways with increased stress responses in both delayed and premature aging. To test the relevance of these processes in natural aging, we compared the transcriptomes of liver, lung, kidney, and spleen over the entire murine adult lifespan and subsequently confirmed these findings on an independent aging cohort. The majority of genes showed similar expression changes in all four organs, indicating a systemic transcriptional response with aging. This systemic response included the same biological processes that are triggered in progeroid and long-lived mice. However, on a genome-wide scale, transcriptomes of naturally aged mice showed a strong association to progeroid but not to long-lived mice. Thus, endocrine and metabolic changes are indicative of “survival” responses to genotoxic stress or starvation, whereas genome-wide associations in gene expression with natural aging are indicative of biological age, which may thus delineate pro- and anti-aging effects of treatments aimed at health-span extension

    Tissue-specific suppression of thyroid hormone signaling in various mouse models of aging

    Get PDF
    DNA damage contributes to the process of aging, as underscored by premature aging syndromes caused by defective DNA repair. Thyroid state changes during aging, but underlying mechanisms remain elusive. Since thyroid hormone (TH) is a key regulator of metabolism, changes in TH signaling have widespread effects. Here, we reveal a significant common transcriptomic signature in livers from hypothyroid mice, DNA repair-deficient mice with severe (Csbm/m/Xpa-/-) or intermediate (Ercc1-/Δ-7) progeria and naturally aged mice. A strong induction of TH-inactivating deiodinase D3 and decrease of TH-activating D1 activities are observed in Csbm/m/Xpa-/- livers. Similar findings are noticed in Ercc1-/Δ-7, in naturally aged animals and in wild-type mice exposed to a chronic subtoxic dose of DNAdamaging agents. In contrast, TH signaling in muscle, heart and brain appears unaltered. These data show a strong suppression of TH signaling in specific peripheral organs in premature and normal aging, probably lowering metabolism, while other tissues appear to preserve metabolism. D3-mediated TH inactivation is unexpected, given its expression mainly in fetal tissues. Our studies highlight the importance of DNA damage as the underlying mechanism of changes in thyroid state. Tissue-specific regulation of deiodinase activities, ensuring diminished TH signaling, may contribute importantly to the protective metabolic response in aging

    The DNA damage response—Repair or despair?

    Full text link
    The term “the DNA damage response” (DDR) encompasses a sophisticated array of cellular initiatives set in motion as cells are exposed to DNA-damaging events. It has been known for over half a century that all organisms have the ability to restore genomic integrity through DNA repair. More recent discoveries of signal transduction pathways linking DNA damage to cell cycle arrest and apoptosis have greatly expanded our views of how cells and tissues limit mutagenesis and tumorigenesis. DNA repair not only plays a pivotal role in suppressing mutagenesis but also in the reversal of signals inducing the stress response. If repair is faulty or the cell is overwhelmed by damage, chances are that the cell will despair and be removed by apoptosis. This final fate is determined by intricate cellular dosimeters that are yet to be fully understood. Here, key findings leading to our current view of DDR are discussed as well as potential areas of importance for future studies. Environ. Mol. Mutagen., 2010. © 2010 Wiley-Liss, Inc.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/78214/1/20597_ftp.pd

    DNA Damage: From Chronic Inflammation to Age-Related Deterioration

    No full text
    To lessen the wear and tear of existence, cells have evolved mechanisms that continuously sense DNA lesions, repair DNA damage and restore the compromised genome back to its native form. Besides genome maintenance pathways, multi-cellular organisms may also employ adaptive and innate immune mechanisms to guard themselves against bacteria or viruses. Recent evidence points to reciprocal interactions between DNA repair, DNA damage responses and aspects of immunity; both self-maintenance and defense responses share a battery of common players and signaling pathways aimed at safeguarding our bodily functions over time. In the short-term, this functional interplay would allow injured cells to restore damaged DNA templates or communicate their compromised state to the micro-environment. In the long-term, however, it may result in the (premature) onset of age-related degeneration, including cancer. Here, we discuss the beneficial and unrewarding outcomes of DNA damage-driven inflammation in the context of tissue-specific pathology and disease progression
    corecore