62 research outputs found

    Factors regulating ozone over the United States and its export to the global atmosphere

    Full text link
    The factors regulating summertime O3 over the United States and its export to the global atmosphere are examined with a 3-month simulation using a continental scale, three-dimensional photochemical model. It is found that reducing NOx emissions by 50% from 1985 levels would decrease rural O3 concentrations over the eastern United States by about 15% under almost all meteorological conditions, while reducing anthropogenic hydrocarbon emissions by 50% would have less than a 4% effect except in the largest urban plumes. The strongly NOx-limited conditions in the model reflect the dominance of rural areas as sources of O3 on the regional scale. The correlation between O3 concentrations and temperature observed at eastern U.S. sites is attributed in part to the association of high temperatures with regional stagnation, and in part to an actual dependence of O3 production on temperature driven primarily by conversion of NOx to peroxyacetylnitrate (PAN). The net number of O3 molecules produced per molecule of NOx consumed (net O3 production efficiency, accounting for both chemical production and chemical loss of O3) has a mean value of 6.3 in the U.S. boundary layer; it is 3 times higher in the western United States than in the east because of lower NOx concentrations in the west. Approximately 70% of the net chemical production of O3 in the U.S. boundary layer is exported (the rest is deposited). Only 6% of the NOx emitted in the United States is exported out of the U.S. boundary layer as NOx or PAN, but this export contributes disproportionately to total U.S. influence on global tropospheric O3because of the high O3 production efficiency per unit NOx in the remote troposphere. It is estimated that export of U.S. pollution supplies 8 Gmol O3 d−1 to the global troposphere in summer, including 4 Gmol d−1 from direct export of O3 out of the U.S. boundary layer and 4 Gmol d−1 from production of O3 downwind of the United States due to exported NOx. This U.S. pollution source can be compared to estimates of 18–28 Gmol d−1 for the cross-tropopause transport of O3 over the entire northern hemisphere in summer

    Simulation of summertime ozone over North America

    Full text link
    The concentrations of O3 and its precursors over North America are simulated for three summer months with a three-dimensional, continental-scale photochemical model using meteorological input from the Goddard Institute for Space Studies (GISS) general circulation model (GCM). The model has 4°×5° grid resolution and represents non linear chemistry in urban and industrial plumes with a subgrid nested scheme. Simulated median afternoon O3 concentrations at rural U.S. sites are within 5 ppb of observations in most cases, except in the south central United States where concentrations are overpredicted by 15–20 ppb. The model captures successfully the development of regional high-O3 episodes over the northeastern United States on the back side of weak, warm, stagnant anticyclones. Simulated concentrations of CO and nonmethane hydrocarbons are generally in good agreement with observations, concentrations of NOx are underpredicted by 10–30%, and concentrations of peroxyacylnitrates (PANs) are overpredicted by a factor of 2 to 3. The overprediction of PANs is attributed to flaws in the photochemical mechanism, including excessive production from oxidation of isoprene, and may also reflect an underestimate of PANs deposition. Subgrid nonlinear chemistry as captured by the nested plumes scheme decreases the net O3 production computed in the United States boundary layer by 8% on average

    Measurement of the W boson polarisation in ttˉt\bar{t} events from pp collisions at s\sqrt{s} = 8 TeV in the lepton + jets channel with ATLAS

    Get PDF

    Measurement of jet fragmentation in Pb+Pb and pppp collisions at sNN=2.76\sqrt{{s_\mathrm{NN}}} = 2.76 TeV with the ATLAS detector at the LHC

    Get PDF

    Search for new phenomena in events containing a same-flavour opposite-sign dilepton pair, jets, and large missing transverse momentum in s=\sqrt{s}= 13 pppp collisions with the ATLAS detector

    Get PDF
    corecore