584 research outputs found

    Case-Control Analysis of the Impact of Anemia on Quality of Life in Patients with Cancer: A Qca Study Analysis

    Get PDF
    The impact of anemia on the quality of life (QoL) in cancer patients has been studied previously; however, the cut-off point used to define anemia differed among studies, thus providing inconsistent results. Therefore, we analysed the clinical impact of anemia on QoL using the same cut-off point for hemoglobin level to define anemia as that used in ESMO clinical practice guidelines. This post-hoc analysis aimed to determine the impact of anemia on QoL in cancer patients through the European Organization for Research and Treatment of Cancer Quality of life questionnaire version 3.0 (EORTC QLQ-C30) and Euro QoL 5-dimension 3-level (EQ-5D-3L) questionnaire. We found that cancer patients with anemia had significantly worse QoL in clinical terms. In addition, anemic patients had more pronounced symptoms than those in non-anemic patients. Anemia is a common condition in cancer patients and is associated with a wide variety of symptoms that impair quality of life (QoL). However, exactly how anemia affects QoL in cancer patients is unclear because of the inconsistencies in its definition in previous reports. We aimed to examine the clinical impact of anemia on the QoL of cancer patients using specific questionnaires. We performed a post-hoc analysis of a multicenter, prospective, case-control study. We included patients with cancer with (cases) or without (controls) anemia. Participants completed the European Organization for Research and Treatment of Cancer Quality of Life questionnaire version 3.0 (EORTC QLQ-C30) and Euro QoL 5-dimension 3-level (EQ-5D-3L) questionnaire. Statistically significant and clinically relevant differences in the global health status were examined. From 2015 to 2018, 365 patients were included (90 cases and 275 controls). We found minimally important differences in global health status according to the EORTC QLQ-C30 questionnaire (case vs. controls: 45.6 vs. 58%, respectively; mean difference: -12.4, p < 0.001). Regarding symptoms, cancer patients with anemia had more pronounced symptoms in six out of nine scales in comparison with those without anemia. In conclusion, cancer patients with anemia had a worse QoL both clinically and statistically

    Energy Estimation of Cosmic Rays with the Engineering Radio Array of the Pierre Auger Observatory

    Full text link
    The Auger Engineering Radio Array (AERA) is part of the Pierre Auger Observatory and is used to detect the radio emission of cosmic-ray air showers. These observations are compared to the data of the surface detector stations of the Observatory, which provide well-calibrated information on the cosmic-ray energies and arrival directions. The response of the radio stations in the 30 to 80 MHz regime has been thoroughly calibrated to enable the reconstruction of the incoming electric field. For the latter, the energy deposit per area is determined from the radio pulses at each observer position and is interpolated using a two-dimensional function that takes into account signal asymmetries due to interference between the geomagnetic and charge-excess emission components. The spatial integral over the signal distribution gives a direct measurement of the energy transferred from the primary cosmic ray into radio emission in the AERA frequency range. We measure 15.8 MeV of radiation energy for a 1 EeV air shower arriving perpendicularly to the geomagnetic field. This radiation energy -- corrected for geometrical effects -- is used as a cosmic-ray energy estimator. Performing an absolute energy calibration against the surface-detector information, we observe that this radio-energy estimator scales quadratically with the cosmic-ray energy as expected for coherent emission. We find an energy resolution of the radio reconstruction of 22% for the data set and 17% for a high-quality subset containing only events with at least five radio stations with signal.Comment: Replaced with published version. Added journal reference and DO

    Measurement of the Radiation Energy in the Radio Signal of Extensive Air Showers as a Universal Estimator of Cosmic-Ray Energy

    Full text link
    We measure the energy emitted by extensive air showers in the form of radio emission in the frequency range from 30 to 80 MHz. Exploiting the accurate energy scale of the Pierre Auger Observatory, we obtain a radiation energy of 15.8 \pm 0.7 (stat) \pm 6.7 (sys) MeV for cosmic rays with an energy of 1 EeV arriving perpendicularly to a geomagnetic field of 0.24 G, scaling quadratically with the cosmic-ray energy. A comparison with predictions from state-of-the-art first-principle calculations shows agreement with our measurement. The radiation energy provides direct access to the calorimetric energy in the electromagnetic cascade of extensive air showers. Comparison with our result thus allows the direct calibration of any cosmic-ray radio detector against the well-established energy scale of the Pierre Auger Observatory.Comment: Replaced with published version. Added journal reference and DOI. Supplemental material in the ancillary file

    Measurement of the cosmic ray spectrum above 4×10184{\times}10^{18} eV using inclined events detected with the Pierre Auger Observatory

    Full text link
    A measurement of the cosmic-ray spectrum for energies exceeding 4×10184{\times}10^{18} eV is presented, which is based on the analysis of showers with zenith angles greater than 6060^{\circ} detected with the Pierre Auger Observatory between 1 January 2004 and 31 December 2013. The measured spectrum confirms a flux suppression at the highest energies. Above 5.3×10185.3{\times}10^{18} eV, the "ankle", the flux can be described by a power law EγE^{-\gamma} with index γ=2.70±0.02(stat)±0.1(sys)\gamma=2.70 \pm 0.02 \,\text{(stat)} \pm 0.1\,\text{(sys)} followed by a smooth suppression region. For the energy (EsE_\text{s}) at which the spectral flux has fallen to one-half of its extrapolated value in the absence of suppression, we find Es=(5.12±0.25(stat)1.2+1.0(sys))×1019E_\text{s}=(5.12\pm0.25\,\text{(stat)}^{+1.0}_{-1.2}\,\text{(sys)}){\times}10^{19} eV.Comment: Replaced with published version. Added journal reference and DO

    Métodos de evaluación de Pastizales en Patagonia Sur

    Get PDF
    Prólogo de la presente edición: “En los últimos cincuenta años hemos observado cómo ha ido reduciéndose el stock ganadero de las provincias patagónicas. Se han ensayado muchas estrategias de fortalecimiento de la ganadería que no han dado los resultados esperados. La mayor parte de ellas estuvieron orientadas a reposición animal. Si bien científicos como el Ing. Alberto Soriano lo expresaron en 1950 nos faltó convicción para reconocer que la ganadería patagónica se basa en los forrajes que consumen sus animales. Y es allí donde debemos poner nuestras prioridades. Sin una buena alimentación no es posible tener buena reproducción, sanidad, calidad de lana y carne y avanzar en programas de genética. Por otro lado se aprecia un deterioro de los recursos naturales como consecuencia de las actividades humanas sin presupuestos de uso. El presenta Manual realiza una contribución significativa en este sentido aportando las distintas técnicas disponibles en la región para evaluar y utilizar los recursos forrajeros.” Ing. Agr. Jorge Manuel Salomone ex- Director EEA ChubutEEA ChubutFil: Behr, Santiago Javier. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Chubut; ArgentinaFil: Bottaro, Hugo. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Esquel; ArgentinaFil: Buduba, Carlos Guillermo. Universidad Nacional de la Patagonia San Juan Bosco. Facultad de Ingeniería. Centro de Estudios Ambientales Integrados; Argentina. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Esquel; ArgentinaFil: Buono, Gustavo Gabriel. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Chubut; ArgentinaFil: Cesa, Ariela. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Santa Cruz; ArgentinaFil: Ciari, Georgina. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Esquel; ArgentinaFil: Escobar, Juan Maria. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Chubut; ArgentinaFil: Ferrante, Daniela. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Chubut; ArgentinaFil: Garcia Martinez, Guillermo Carlos. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Esquel; ArgentinaFil: González, Liliana. Consejo Agrario Provincial de Santa Cruz; ArgentinaFil: Irisarri, Gonzalo. Universidad de Buenos Aires. Facultad de Agronomía. Laboratorio de Análisis Regional y Teledetección; Argentina.Fil: Lateulade, José Ignacio. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Esquel; ArgentinaFil: Livraghi, Enrique. Instituto Nacional de Tecnología Agropecuaria (INTA). Centro Regional Patagonia Sur. Agencia De Extensión Rural Ushuaia; Argentina.Fil: Massara Paletto; Virginia. Instituto Nacional de Tecnología Agropecuaria (INTA). Estacion Experimental Agropecuaria Chubut; ArgentinaFil: Nakamatsu, Viviana Beatriz. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Chubut; ArgentinaFil: Oliva, Gabriel Esteban. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Santa Cruz; ArgentinaFil: Paredes, Paula Natalia. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Santa Cruz; Argentina.Fil: Peri, Pablo Luis. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Santa Cruz; Argentina. Universidad Nacional de la Patagonia Austral; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Rial, Pablo Eduardo. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Santa Cruz; ArgentinaFil: Utrilla, Victor Ricardo. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Santa Cruz; ArgentinaFil: Villa, Martin Diego. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Esquel; Argentin

    Reducing the environmental impact of surgery on a global scale: systematic review and co-prioritization with healthcare workers in 132 countries

    Get PDF
    Abstract Background Healthcare cannot achieve net-zero carbon without addressing operating theatres. The aim of this study was to prioritize feasible interventions to reduce the environmental impact of operating theatres. Methods This study adopted a four-phase Delphi consensus co-prioritization methodology. In phase 1, a systematic review of published interventions and global consultation of perioperative healthcare professionals were used to longlist interventions. In phase 2, iterative thematic analysis consolidated comparable interventions into a shortlist. In phase 3, the shortlist was co-prioritized based on patient and clinician views on acceptability, feasibility, and safety. In phase 4, ranked lists of interventions were presented by their relevance to high-income countries and low–middle-income countries. Results In phase 1, 43 interventions were identified, which had low uptake in practice according to 3042 professionals globally. In phase 2, a shortlist of 15 intervention domains was generated. In phase 3, interventions were deemed acceptable for more than 90 per cent of patients except for reducing general anaesthesia (84 per cent) and re-sterilization of ‘single-use’ consumables (86 per cent). In phase 4, the top three shortlisted interventions for high-income countries were: introducing recycling; reducing use of anaesthetic gases; and appropriate clinical waste processing. In phase 4, the top three shortlisted interventions for low–middle-income countries were: introducing reusable surgical devices; reducing use of consumables; and reducing the use of general anaesthesia. Conclusion This is a step toward environmentally sustainable operating environments with actionable interventions applicable to both high– and low–middle–income countries

    A case-control analysis of the impact of venous thromboembolic disease on quality of life of patients with cancer: Quality of life in cancer (QCA) study

    No full text
    Abstract: Although there is published research on the impact of venous thromboembolism (VTE) on quality of life (QoL), this issue has not been thoroughly investigated in patients with cancer—particularly using specific questionnaires. We aimed to examine the impact of acute symptomatic VTE on QoL of patients with malignancies. This was a multicenter, prospective, case-control study conducted in patients with cancer either with (cases) or without (controls) acute symptomatic VTE. Participants completed the EORTC QLQ-C30, EQ-5D-3L, PEmb-QoL, and VEINES-QOL/Sym questionnaires. Statistically significant and clinically relevant differences in terms of global health status were examined. Between 2015 and 2018, we enrolled 425 patients (128 cases and 297 controls; mean age: 60.2 ± 18.4 years). The most common malignancies were gastrointestinal (23.5%) and lung (19.8%) tumors. We found minimally important differences in global health status on the EQ-5D-3L (cases versus controls: 0.55 versus 0.77; mean difference: −0.22) and EORTC QLQ-C30 (47.7 versus 58.4; mean difference: −10.3) questionnaires. There were minimally important differences on the PEmb-QoL questionnaire (44.4 versus 23; mean difference: −21.4) and a significantly worse QoL on the VEINES-QOL/Sym questionnaire (42.7 versus 51.7; mean difference: −9). In conclusion, we showed that acute symptomatic VTE adversely affects the QoL of patients with malignancies
    corecore