369 research outputs found

    Clinical benefit of adenosine as an adjunct to reperfusion in ST-elevation myocardial infarction patients: An updated meta-analysis of randomized controlled trials

    Get PDF
    Background: Adenosine administered as an adjunct to reperfusion can reduce coronary no-reflow and limit myocardial infarct (MI) size in ST-segment elevation myocardial infarction (STEMI) patients. Whether adjunctive adenosine therapy can improve clinical outcomes in reperfused STEMI patients is not clear and is investigated in this meta-analysis of 13 randomized controlled trials (RCTs). Methods: We performed an up-to-date search for all RCTs investigating adenosine as an adjunct to reperfusion in STEMI patients. We calculated pooled relative risks using a fixed-effect meta-analysis assessing the impact of adjunctive adenosine therapy on major clinical endpoint including all-cause mortality, non-fatal myocardial infarction, and heart failure. Surrogate markers of reperfusion were also analyzed. Results: 13 RCTs (4273 STEMI patients) were identified and divided into 2 subgroups: intracoronary adenosine versus control (8 RCTs) and intravenous adenosine versus control (5 RCTs). In patients administered intracoronary adenosine, the incidence of heart failure was significantly lower (risk ratio [RR] 0.44 [95% CI 0.25–0.78], P = 0.005) and the incidence of coronary no-reflow was reduced (RR for TIMI flow<3 postreperfusion 0.68 [95% CI 0.47–0.99], P = 0.04). There was no difference in heart failure incidence in the intravenous adenosine group but most RCTs in this subgroup were from the thrombolysis era. There was no difference in non-fatal MI or all-cause mortality in both subgroups. Conclusion: We find evidence of improved clinical outcome in terms of less heart failure in STEMI patients administered intracoronary adenosine as an adjunct to reperfusion. This finding will need to be confirmed in a large adequately powered prospective RCT

    Optimal opportunistic screening of atrial fibrillation using pulse palpation in cardiology outpatient clinics: Who and how

    Full text link
    Atrial fibrillation (AF) remain a prevalent undiagnosed condition frequently encountered in primary care.We aimed to find the parameters that optimize the diagnostic accuracy of pulse palpation to detect AF. We also aimed to create a simple algorithm for selecting which individuals would benefit from pulse palpation and, if positive, receive an ECG to detect AF.Nurses from four Cardiology outpatient clinics palpated 7,844 pulses according to a randomized list of arterial territories and durations of measure and immediately followed by a 12-lead ECG, which we used as the reference standard. We calculated the sensitivity and specificity of the palpation parameters. We also assessed whether diagnostic accuracy depended on the nurse's experience or on a list of clinical factors of the patients. With this information, we estimated the positive predictive values and false omission rates according to very few clinical factors readily available in primary care (age, sex, and diagnosis of heart failure) and used them to create the algorithm.The parameters associated with the highest diagnostic accuracy were palpation of the radial artery and classifying as irregular those palpations in which the nurse was uncertain about pulse regularity or unable to palpate pulse (sensitivity = 79%; specificity = 86%). Specificity decreased with age. Neither the nurse's experience nor any investigated clinical factor influenced diagnostic accuracy. We provide the algorithm to select the ≥40 years old individuals that would benefit from a pulse palpation screening: a) do nothing in <60 years old individuals without heart failure; b) do ECG in ≥70 years old individuals with heart failure; c) do radial pulse palpation in the remaining individuals and do ECG if the pulse is irregular or you are uncertain about its regularity or unable to palpate it.Opportunistic screening for AF using optimal pulse palpation in candidate individuals according to a simple algorithm may have high effectiveness in detecting AF in primary care

    Targeting reperfusion injury in patients with ST-segment elevation myocardial infarction : trials and tribulations

    Get PDF
    Altres ajuts: D.J.H. and D.M.Y. are funded by the British Heart Foundation and the Rosetrees Trust, and are supported by the National Institute for Health Research University College London Hospitals Biomedical Research Centre of which D.M.Y. is a senior investigator. G.H. is supported by the German Research Foundation (He 1320/18-3; SFB 1116 B8)

    Targeting reperfusion injury in patients with ST-segment elevation myocardial infarction: trials and tribulations

    Get PDF
    D.J.H. and D.M.Y. are funded by the British Heart Foundation and the Rosetrees Trust, and are supported by the National Institute for Health Research University College London Hospitals Biomedical Research Centre of which D.M.Y. is a senior investigator. D.G.-D. is funded by the Cardiovascular Research Network of the Spanish Institute of Health Instituto de Salud Carlos III (ISCiii RETICS-RIC, RD12/0042/0021). G.H. is supported by the German Research Foundation (He 1320/18-3; SFB 1116 B8). B.I. is funded by the Carlos III Institute of Health and European Regional Development Fund (ERDF/FEDER) (PI13/01979), and the ISCiii Cardiovascular Research Network (RD12/0042/0054). Funding to pay the Open Access publication charges for this article was provided by Red de Investigacion Cardiovascular del Instituto de Salud Carlos III, grupo Hospital Universitari Vall d'Hebron (RETICS 2012 RD12/0042/0021).S

    Differential study of retinal thicknesses in the eyes of Alzheimer’s patients, multiple sclerosis patients and healthy subjects

    Get PDF
    Multiple sclerosis (MS) and Alzheimer’s disease (AD) cause retinal thinning that is detectable in vivo using optical coherence tomography (OCT). To date, no papers have compared the two diseases in terms of the structural differences they produce in the retina. The purpose of this study is to analyse and compare the neuroretinal structure in MS patients, AD patients and healthy subjects using OCT. Spectral domain OCT was performed on 21 AD patients, 33 MS patients and 19 control subjects using the Posterior Pole protocol. The area under the receiver operating characteristic (AUROC) curve was used to analyse the differences between the cohorts in nine regions of the retinal nerve fibre layer (RNFL), ganglion cell layer (GCL), inner plexiform layer (IPL) and outer nuclear layer (ONL). The main differences between MS and AD are found in the ONL, in practically all the regions analysed (AUROCFOVEAL = 0.80, AUROCPARAFOVEAL = 0.85, AUROCPERIFOVEAL = 0.80, AUROC_PMB = 0.77, AUROCPARAMACULAR = 0.85, AUROCINFERO_NASAL = 0.75, AUROCINFERO_TEMPORAL = 0.83), and in the paramacular zone (AUROCPARAMACULAR = 0.75) and infero-temporal quadrant (AUROCINFERO_TEMPORAL = 0.80) of the GCL. In conclusion, our findings suggest that OCT data analysis could facilitate the differential diagnosis of MS and AD

    Myocardial Edema After Ischemia/Reperfusion Is Not Stable and Follows a Bimodal Pattern Imaging and Histological Tissue Characterization

    Get PDF
    Background: It is widely accepted that edema occurs early in the ischemic zone and persists in stable form for at least 1 week after myocardial ischemia/reperfusion. However, there are no longitudinal studies covering from very early (minutes) to late (1 week) reperfusion stages confirming this phenomenon. Objectives: This study sought to perform a comprehensive longitudinal imaging and histological characterization of the edematous reaction after experimental myocardial ischemia/reperfusion. Methods: The study population consisted of 25 instrumented Large-White pigs (30 kg to 40 kg). Closed-chest 40-min ischemia/reperfusion was performed in 20 pigs, which were sacrificed at 120 min (n = 5), 24 h (n = 5), 4 days (n = 5), and 7 days (n = 5) after reperfusion and processed for histological quantification of myocardial water content. Cardiac magnetic resonance (CMR) scans with T2-weighted short-tau inversion recovery and T2-mapping sequences were performed at every follow-up stage until sacrifice. Five additional pigs sacrificed after baseline CMR served as controls. Results: In all pigs, reperfusion was associated with a significant increase in T2 relaxation times in the ischemic region. On 24-h CMR, ischemic myocardium T2 times returned to normal values (similar to those seen pre-infarction). Thereafter, ischemic myocardium-T2 times in CMR performed on days 4 and 7 after reperfusion progressively and systematically increased. On day 7 CMR, T2 relaxation times were as high as those observed at reperfusion. Myocardial water content analysis in the ischemic region showed a parallel bimodal pattern: 2 high water content peaks at reperfusion and at day 7, and a significant decrease at 24 h. Conclusions: Contrary to the accepted view, myocardial edema during the first week after ischemia/reperfusion follows a bimodal pattern. The initial wave appears abruptly upon reperfusion and dissipates at 24 h. Conversely, the deferred wave of edema appears progressively days after ischemia/reperfusion and is maximal around day 7 after reperfusion
    corecore