56 research outputs found

    Flora vascular de los Quintos de Mora (Los Yébenes, Toledo)

    Full text link
    Pasados 22 años desde que se publicara el primer catálogo florístico de la finca Quintos de Mora (Los Yébenes, Toledo) se ha abordado una revisión y ampliación de dicho estudio. Tras este trabajo el acerbo florístico de la finca asciende a más de 800 táxones (más del doble de lo hasta ahora conocido) lo que no deja de ser un dato relevante en sí mismo para un enclave relativamente pequeño y no muy heterogéneo. Entre este listado aparecen más de 70 especies o subespecies no citadas previamente para la provincia de Toledo. El inventario se completa con una valoración sistemática, corológica y biotípica de la flora de esta finca de los Montes de Toledo

    Pressure-Tuning of Magnetism and Linkage Isomerism in Iron(II) Hexacyanochromate

    Get PDF
    A pressure-induced linkage isomerization of the cyanide anion has been observed in single crystals of a chromium(III)−iron(II) Prussian blue analogue of formula K0.4Fe4[Cr(CN)6]2.8□1.2·16H2O (1). Upon application of pressure in the 0−1200 MPa range, the cyanide ligand rotates and becomes C-bonded to the iron(II) cations, leading to a stabilization of their diamagnetic low-spin states. The result is a decrease of magnetization and magnetic ordering temperatures from TC = 19 K at ambient pressure to 13 K at 1200 MPa. The initial magnetic properties can be restored on pressure release. The reversible movement of cyanide in the solid state can be exploited as a switch of the magnetic interaction at the molecular level.We thank J. M. Martínez-Agudo for the magnetic measurements. Financial support from the Ministerio de Educación y Ciencia (Project MAT2004-03849 and Programa “Ramón y Cajal” to F.M.R.) and Generalitat Valenciana is also acknowledged.S

    Pressure-Driven Metallization in Hafnium Diselenide

    Full text link
    The quest for new transition metal dichalcogenides (TMDs) with outstanding electronic properties operating at ambient conditions draws us to investigate the 1T-HfSe2 polytype under hydrostatic pressure. Diamond anvil cell (DAC) devices coupled to in- situ synchrotron X-ray, Raman and optical (VIS-NIR) absorption experiments along with density functional theory (DFT) based calculations prove that: (i) bulk 1T-HfSe2 exhibits strong structural and vibrational anisotropies, being the interlayer direction especially sensitive to pressure changes, (ii) the indirect gap of 1T-HfSe2 trend to vanish by a -0.1 eV/GPa pressure rate, slightly faster than MoS2 or WS2, (iii) the onset of the metallic behavior appears at Pmet ~10 GPa, which is to date the lowest pressure among common TMDs, and finally (iv) the electronic transition is explained by the bulk modulus B0-Pmet correlation, along with the pressure coefficient of the band gap, in terms of the electronic overlap between chalcogenide p-type and metal d-type orbitals

    Highs and Lows of Bond Lengths: Is There Any Limit?

    Get PDF
    Two distinct points on the potential energy curve (PEC) of a pairwise interaction, the zero-energy crossing point and the point where the stretching force constant vanishes, allow us to anticipate the range of possible distances between two atoms in diatomic, molecular moieties and crystalline systems. We show that these bond-stability boundaries are unambiguously defined and correlate with topological descriptors of electron-density-based scalar fields, and can be calculated using generic PECs. Chemical databases and quantum-mechanical calculations are used to analyze a full set of diatomic bonds of atoms from the s-p main block. Emphasis is placed on the effect of substituents in C-C covalent bonds, concluding that distances shorter than 1.14 Å or longer than 2.0 Å are unlikely to be achieved, in agreement with ultra-high-pressure data and transition-state distances, respectively. Presumed exceptions are used to place our model in the correct framework and to formulate a conjecture for chained interactions, which offers an explanation for the multimodal histogram of O-H distances reported for hundreds of chemical systems

    Identification and dynamics of polyglycine II nanocrystals in Argiope trifasciata flagelliform silk

    Get PDF
    Spider silks combine a significant number of desirable characteristics in one material, including large tensile strength and strain at breaking, biocompatibility, and the possibility of tailoring their properties. Major ampullate gland silk (MAS) is the most studied silk and their properties are explained by a double lattice of hydrogen bonds and elastomeric protein chains linked to polyalanine β-nanocrystals. However, many basic details regarding the relationship between composition, microstructure and properties in silks are still lacking. Here we show that this relationship can be traced in flagelliform silk (Flag) spun by Argiope trifasciata spiders after identifying a phase consisting of polyglycine II nanocrystals. The presence of this phase is consistent with the dominant presence of the –GGX– and –GPG– motifs in its sequence. In contrast to the passive role assigned to polyalanine nanocrystals in MAS, polyglycine II nanocrystals can undergo growing/collapse processes that contribute to increase toughness and justify the ability of Flag to supercontract

    Overview of the techniques used for the study of non-terrestrial bodies: Proposition of novel non-destructive methodology

    Get PDF
    Meteorites and impact glasses have been largely analysed using different techniques, but most studies have been focused on their geologicalemineralogical characterization and isotopic ratios, mainly of a destructive nature. However, much more information can be gained by applying novel non-destructive analytical procedures and techniques that have been scarcely used to analyse these materials. This overview presents some new methodologies to study these materials and compares these new approaches with the commonly used ones. Techniques such as X-Ray Fluorescence (XRF) and Laser Induced Breakdown Spectroscopy (LIBS), for elemental characterization, the hyphenated Raman spectroscopy- SEM/EDS and the combination of them, allow extracting simultaneous information from elemental, molecular and structural data of the studied sample; furthermore, the spectroscopic image capabilities of such techniques allow a better understanding of the mineralogical distribution. © 2017 Elsevier B.V. All rights reserved.Ministerio de Economía, Industria y Competitividad (project ESP2014-56138-C3-2-R

    SuperCam Calibration Targets: Design and Development

    Get PDF
    SuperCam is a highly integrated remote-sensing instrumental suite for NASA’s Mars 2020 mission. It consists of a co-aligned combination of Laser-Induced Breakdown Spectroscopy (LIBS), Time-Resolved Raman and Luminescence (TRR/L), Visible and Infrared Spectroscopy (VISIR), together with sound recording (MIC) and high-magnification imaging techniques (RMI). They provide information on the mineralogy, geochemistry and mineral context around the Perseverance Rover. The calibration of this complex suite is a major challenge. Not only does each technique require its own standards or references, their combination also introduces new requirements to obtain optimal scientific output. Elemental composition, molecular vibrational features, fluorescence, morphology and texture provide a full picture of the sample with spectral information that needs to be co-aligned, correlated, and individually calibrated. The resulting hardware includes different kinds of targets, each one covering different needs of the instrument. Standards for imaging calibration, geological samples for mineral identification and chemometric calculations or spectral references to calibrate and evaluate the health of the instrument, are all included in the SuperCam Calibration Target (SCCT). The system also includes a specifically designed assembly in which the samples are mounted. This hardware allows the targets to survive the harsh environmental conditions of the launch, cruise, landing and operation on Mars during the whole mission. Here we summarize the design, development, integration, verification and functional testing of the SCCT. This work includes some key results obtained to verify the scientific outcome of the SuperCam system

    Notch signaling directly controls cell proliferation in the Drosophila wing disc

    No full text
    Notch signaling is involved in cell differentiation and patterning during morphogenesis. In the Drosophila wing, Notch activity regulates the expression of several genes at the dorsal/ventral boundary, and this is thought to elicit wing-cell proliferation. In this work, we show the effect of clones of cells expressing different forms of several members of the Notch signaling pathway, which result in an alteration of Notch activity. The ectopic expression in clones of activated forms of Notch or of its ligands (Delta or Serrate) in the wing causes outgrowths associated with the appearance of ectopic wing margins. These outgrowths consist of mutant territories and of surrounding wild-type cells. However, the ectopic expression of Delta, at low levels in ventral clones, causes large outgrowths that are associated neither with the generation of wing margin structures nor with the expression of genes characteristic of the dorsal/ventral boundary. These results suggest that Notch activity is directly involved in cell proliferation, independently of its role in the formation of the dorsal/ventral boundary. We propose that the nonautonomous effects (induction of extraproliferation and vein differentiation in the surrounding wild-type cells) result from pattern accommodation to positional values caused by the ectopic expression of Notch
    corecore