2,763 research outputs found

    Rapid detection of A. pleuropneumoniae from clinical samples using recombinase polymerase amplification

    Get PDF
    Actinobacillus pleuropneumoniae (APP) is the causative agent of porcine pleuropneumonia, resulting in high economic impact worldwide. There are currently 19 known serovars of APP, with different ones being predominant in specific geographic regions. Outbreaks of pleuropneumonia, characterized by sudden respiratory difficulties and high mortality, can occur when infected pigs are brought into naïve herds, or by those carrying different serovars. Good biosecurity measures include regular diagnostic testing for surveillance purposes. Current gold standard diagnostic techniques lack sensitivity (bacterial culture), require expensive thermocycling machinery (PCR) and are time consuming (culture and PCR). Here we describe the development of an isothermal point-of-care diagnostic test - utilizing recombinase polymerase amplification (RPA) for the detection of APP, targeting the species-specific apxIVA gene. Our APP-RPA diagnostic test achieved a sensitivity of 10 copies/µL using a strain of APP serovar 8, which is the most prevalent serovar in the UK. Additionally, our APP-RPA assay achieved a clinical sensitivity and specificity of 84.3% and 100%, respectively, across 61 extracted clinical samples obtained from farms located in England and Portugal. Using a small subset (n = 14) of the lung tissue samples, we achieved a clinical sensitivity and specificity of 76.9% and 100%, respectively) using lung imprints made on FTA cards tested directly in the APP- RPA reaction. Our results demonstrate that our APP-RPA assay enables a suitable rapid and sensitive screening tool for this important veterinary pathogen

    Universal Vectorial and Ultrasensitive Nanomechanical Force Field Sensor

    Full text link
    Miniaturization of force probes into nanomechanical oscillators enables ultrasensitive investigations of forces on dimensions smaller than their characteristic length scale. Meanwhile it also unravels the force field vectorial character and how its topology impacts the measurement. Here we expose an ultrasensitive method to image 2D vectorial force fields by optomechanically following the bidimensional Brownian motion of a singly clamped nanowire. This novel approach relies on angular and spectral tomography of its quasi frequency-degenerated transverse mechanical polarizations: immersing the nanoresonator in a vectorial force field does not only shift its eigenfrequencies but also rotate eigenmodes orientation as a nano-compass. This universal method is employed to map a tunable electrostatic force field whose spatial gradients can even take precedence over the intrinsic nanowire properties. Enabling vectorial force fields imaging with demonstrated sensitivities of attonewton variations over the nanoprobe Brownian trajectory will have strong impact on scientific exploration at the nanoscale

    Human Computation and Convergence

    Full text link
    Humans are the most effective integrators and producers of information, directly and through the use of information-processing inventions. As these inventions become increasingly sophisticated, the substantive role of humans in processing information will tend toward capabilities that derive from our most complex cognitive processes, e.g., abstraction, creativity, and applied world knowledge. Through the advancement of human computation - methods that leverage the respective strengths of humans and machines in distributed information-processing systems - formerly discrete processes will combine synergistically into increasingly integrated and complex information processing systems. These new, collective systems will exhibit an unprecedented degree of predictive accuracy in modeling physical and techno-social processes, and may ultimately coalesce into a single unified predictive organism, with the capacity to address societies most wicked problems and achieve planetary homeostasis.Comment: Pre-publication draft of chapter. 24 pages, 3 figures; added references to page 1 and 3, and corrected typ

    In vitro synergistic cytotoxicity of gemcitabine and pemetrexed and pharmacogenetic evaluation of response to gemcitabine in bladder cancer patients

    Get PDF
    The present study was performed to investigate the capability of gemcitabine and pemetrexed to synergistically interact with respect to cytotoxicity and apoptosis in T24 and J82 bladder cancer cells, and to establish a correlation between drug activity and gene expression of selected genes in tumour samples. The interaction between gemcitabine and pemetrexed was synergistic; indeed, pemetrexed favoured gemcitabine cytotoxicity by increasing cellular population in S-phase, reducing Akt phosphorylation as well as by inducing the expression of a major gemcitabine uptake system, the human equilibrative nucleoside transporter-1 (hENT1), and the key activating enzyme deoxycytidine kinase (dCK) in both cell lines. Bladder tumour specimens showed an heterogeneous gene expression pattern and patients with higher levels of dCK and hENT1 had better response. Moreover, human nucleoside concentrative transporter-1 was detectable only in 3/12 patients, two of whom presented a complete response to gemcitabine. These data provide evidence that the chemotherapeutic activity of the combination of gemcitabine and pemetrexed is synergistic against bladder cancer cells in vitro and that the assessment of the expression of genes involved in gemcitabine uptake and activation might be a possible determinant of bladder cancer response and may represent a new tool for treatment optimization

    Transplantation of canine olfactory ensheathing cells producing chondroitinase ABC promotes chondroitin sulphate proteoglycan digestion and axonal sprouting following spinal cord injury

    Get PDF
    Olfactory ensheathing cell (OEC) transplantation is a promising strategy for treating spinal cord injury (SCI), as has been demonstrated in experimental SCI models and naturally occurring SCI in dogs. However, the presence of chondroitin sulphate proteoglycans within the extracellular matrix of the glial scar can inhibit efficient axonal repair and limit the therapeutic potential of OECs. Here we have used lentiviral vectors to genetically modify canine OECs to continuously deliver mammalian chondroitinase ABC at the lesion site in order to degrade the inhibitory chondroitin sulphate proteoglycans in a rodent model of spinal cord injury. We demonstrate that these chondroitinase producing canine OECs survived at 4 weeks following transplantation into the spinal cord lesion and effectively digested chondroitin sulphate proteoglycans at the site of injury. There was evidence of sprouting within the corticospinal tract rostral to the lesion and an increase in the number of corticospinal axons caudal to the lesion, suggestive of axonal regeneration. Our results indicate that delivery of the chondroitinase enzyme can be achieved with the genetically modified OECs to increase axon growth following SCI. The combination of these two promising approaches is a potential strategy for promoting neural regeneration following SCI in veterinary practice and human patients

    Integrating isotopes and documentary evidence : dietary patterns in a late medieval and early modern mining community, Sweden

    Get PDF
    We would like to thank the Archaeological Research Laboratory, Stockholm University, Sweden and the Tandem Laboratory (Ångström Laboratory), Uppsala University, Sweden, for undertaking the analyses of stable nitrogen and carbon isotopes in both human and animal collagen samples. Also, thanks to Elin Ahlin Sundman for providing the δ13C and δ15N values for animal references from Västerås. This research (Bäckström’s PhD employment at Lund University, Sweden) was supported by the Berit Wallenberg Foundation (BWS 2010.0176) and Jakob and Johan Söderberg’s foundation. The ‘Sala project’ (excavations and analyses) has been funded by Riksens Clenodium, Jernkontoret, Birgit and Gad Rausing’s Foundation, SAU’s Research Foundation, the Royal Physiographic Society of Lund, Berit Wallenbergs Foundation, Åke Wibergs Foundation, Lars Hiertas Memory, Helge Ax:son Johnson’s Foundation and The Royal Swedish Academy of Sciences.Peer reviewedPublisher PD

    TRY plant trait database - enhanced coverage and open access

    Get PDF
    Plant traits-the morphological, anatomical, physiological, biochemical and phenological characteristics of plants-determine how plants respond to environmental factors, affect other trophic levels, and influence ecosystem properties and their benefits and detriments to people. Plant trait data thus represent the basis for a vast area of research spanning from evolutionary biology, community and functional ecology, to biodiversity conservation, ecosystem and landscape management, restoration, biogeography and earth system modelling. Since its foundation in 2007, the TRY database of plant traits has grown continuously. It now provides unprecedented data coverage under an open access data policy and is the main plant trait database used by the research community worldwide. Increasingly, the TRY database also supports new frontiers of trait-based plant research, including the identification of data gaps and the subsequent mobilization or measurement of new data. To support this development, in this article we evaluate the extent of the trait data compiled in TRY and analyse emerging patterns of data coverage and representativeness. Best species coverage is achieved for categorical traits-almost complete coverage for 'plant growth form'. However, most traits relevant for ecology and vegetation modelling are characterized by continuous intraspecific variation and trait-environmental relationships. These traits have to be measured on individual plants in their respective environment. Despite unprecedented data coverage, we observe a humbling lack of completeness and representativeness of these continuous traits in many aspects. We, therefore, conclude that reducing data gaps and biases in the TRY database remains a key challenge and requires a coordinated approach to data mobilization and trait measurements. This can only be achieved in collaboration with other initiatives

    Measurement of the top quark mass using the matrix element technique in dilepton final states

    Get PDF
    We present a measurement of the top quark mass in pp¯ collisions at a center-of-mass energy of 1.96 TeV at the Fermilab Tevatron collider. The data were collected by the D0 experiment corresponding to an integrated luminosity of 9.7  fb−1. The matrix element technique is applied to tt¯ events in the final state containing leptons (electrons or muons) with high transverse momenta and at least two jets. The calibration of the jet energy scale determined in the lepton+jets final state of tt¯ decays is applied to jet energies. This correction provides a substantial reduction in systematic uncertainties. We obtain a top quark mass of mt=173.93±1.84  GeV
    corecore