6 research outputs found

    Transcriptomic and proteomic profiling of maize embryos exposed to camptothecin

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Camptothecin is a plant alkaloid that specifically binds topoisomerase I, inhibiting its activity and inducing double stranded breaks in DNA, activating the cell responses to DNA damage and, in response to severe treatments, triggering cell death.</p> <p>Results</p> <p>Comparative transcriptomic and proteomic analyses of maize embryos that had been exposed to camptothecin were conducted. Under the conditions used in this study, camptothecin did not induce extensive degradation in the genomic DNA but induced the transcription of genes involved in DNA repair and repressed genes involved in cell division. Camptothecin also affected the accumulation of several proteins involved in the stress response and induced the activity of certain calcium-dependent nucleases. We also detected changes in the expression and accumulation of different genes and proteins involved in post-translational regulatory processes.</p> <p>Conclusions</p> <p>This study identified several genes and proteins that participate in DNA damage responses in plants. Some of them may be involved in general responses to stress, but others are candidate genes for specific involvement in DNA repair. Our results open a number of new avenues for researching and improving plant resistance to DNA injury.</p

    Evaluation of appendicitis risk prediction models in adults with suspected appendicitis

    Get PDF
    Background Appendicitis is the most common general surgical emergency worldwide, but its diagnosis remains challenging. The aim of this study was to determine whether existing risk prediction models can reliably identify patients presenting to hospital in the UK with acute right iliac fossa (RIF) pain who are at low risk of appendicitis. Methods A systematic search was completed to identify all existing appendicitis risk prediction models. Models were validated using UK data from an international prospective cohort study that captured consecutive patients aged 16–45 years presenting to hospital with acute RIF in March to June 2017. The main outcome was best achievable model specificity (proportion of patients who did not have appendicitis correctly classified as low risk) whilst maintaining a failure rate below 5 per cent (proportion of patients identified as low risk who actually had appendicitis). Results Some 5345 patients across 154 UK hospitals were identified, of which two‐thirds (3613 of 5345, 67·6 per cent) were women. Women were more than twice as likely to undergo surgery with removal of a histologically normal appendix (272 of 964, 28·2 per cent) than men (120 of 993, 12·1 per cent) (relative risk 2·33, 95 per cent c.i. 1·92 to 2·84; P < 0·001). Of 15 validated risk prediction models, the Adult Appendicitis Score performed best (cut‐off score 8 or less, specificity 63·1 per cent, failure rate 3·7 per cent). The Appendicitis Inflammatory Response Score performed best for men (cut‐off score 2 or less, specificity 24·7 per cent, failure rate 2·4 per cent). Conclusion Women in the UK had a disproportionate risk of admission without surgical intervention and had high rates of normal appendicectomy. Risk prediction models to support shared decision‐making by identifying adults in the UK at low risk of appendicitis were identified

    Induction of mRNA accumulation corresponding to a gene encoding a cell wall hydroxyproline-rich glycoprotein by fungal elicitors

    No full text
    The Hrgp (hydroxyproline-rich glycoprotein) gene codes in maize for one of the most abundant proteins of the cell wall. HRGPs may contribute to the structural support of the wall and they have also been involved in plant defense mechanisms. This second aspect has been tested for the Hrgp gene in maize where, in contrast with the situation in dicot species, the gene is encoded by a single-copy sequence. Hrgp mRNA accumulation is induced in maize suspension-cultured cells by elicitors, isolated either from maize pathogenic or non-pathogenic fungi. The induction of Hrgp mRNA accumulation by elicitor extracted from Fusarium moniliforme has been studied in detail. The level of induction depends on elicitor concentration and remains high until at least 24 h. Ethylene and protein phosphorylation appear to be involved in the transduction pathway of Hrgp gene activation by the F. moniliforme elicitor but not by 5 µM methyl jasmonate or 1 mM salycilic acid. Different compounds known to participate in plant stress responses such as ascorbic acid or reduced glutathione have also a positive effect on Hrgp mRNA accumulation.The work was supported by grant BIO94-0734 from Plan Nacional de Investigación Científica y Técnica and has been carried out within the framework of Centre de Referència de Biotecnologia de la Generalitat de Catalunya.Peer reviewe

    ZmPTR1, a maize peptide transporter expressed in the epithelial cells of the scutellum during germination

    No full text
    In plants, peptide transporter/nitrate transporter 1 (PTR/NRT1) family proteins transport a variety of substrates such as nitrate, di- and tripepetides, auxin and carboxylates across membranes. We isolated and characterized ZmPTR1, a maize member of this family. ZmPTR1 protein sequence is highly homologous to the previously characterized di- and tripeptide Arabidopsis transporters AtPTR2, AtPTR4 and AtPTR6. ZmPTR1 gene is expressed in the cells of the scutellar epithelium during germination and, to a less extent, in the radicle and the hypocotyl. Arabidopsis thaliana lines overexpressing ZmPTR1 performed better than control plants when grown on a medium with Ala-Ala dipeptide as the unique N source. Our results suggest that ZmPTR1 plays a role in the transport into the embryo of the small peptides produced during enzymatic hydrolysis of the storage proteins in the endosperm.This work was funded by the Spanish Ministry of Science and Innovation (BIO2007-64791 and BIO2007-20I037), the Consolider-Ingenio program (CSD2007-00036), and the Xarxa de Referencia en Biotecnologia of the Government of Catalonia. H.T. was the recipient of a predoctoral I3P (Consejo Superior de Investigaciones Científicas).Peer reviewe

    Expression profile of maize (Zea mays) scutellar epithelium during imbibition

    No full text
    The scutellum is a shield-shaped structure surrounding the embryo axis in grass species. The scutellar epithelium (Sep) is a monolayer of cells in contact with the endosperm. The Sep plays an important role during seed germination in the secretion of gibberellins and hydrolytic enzymes and in the transport of the hydrolized products to the growing embryo. We identified 30 genes predominantly expressed after imbibition in the Sep as compared to other parts of the scutellum. A high proportion of these genes is involved in metabolic processes. Some other identified genes are involved in the synthesis or modification of cell walls, which may be reflected in the changes of cell shape and cell wall composition that can be observed during imbibition. One of the genes encodes a proteinase that belongs to a proteinase family typical of carnivorous plants. Almost nothing is known about their role in other plants or organs, but the scutellar presence may point to a “digestive” function during germination. Genes involved in the production of energy and the transport of peptides were also identified.This work was funded by the Spanish Ministry of Science and Innovation (BIO2007-64791 and 200720I037), the CONSOLIDER-INGENIO programme (CSD2007-00036), and the Xarxa de Referencia en Biotecnologia of the Government of Catalonia. H.T. was the recipient of a predoctoral I3P (CSIC).Peer reviewe

    Transcriptomic and proteomic profiling of maize embryos exposed to camptothecin

    No full text
    Camptothecin is a plant alkaloid that specifically binds topoisomerase I, inhibiting its activity and inducing double stranded breaks in DNA, activating the cell responses to DNA damage and, in response to severe treatments, triggering cell death. Comparative transcriptomic and proteomic analyses of maize embryos that had been exposed to camptothecin were conducted. Under the conditions used in this study, camptothecin did not induce extensive degradation in the genomic DNA but induced the transcription of genes involved in DNA repair and repressed genes involved in cell division. Camptothecin also affected the accumulation of several proteins involved in the stress response and induced the activity of certain calcium-dependent nucleases. We also detected changes in the expression and accumulation of different genes and proteins involved in post-translational regulatory processes. This study identified several genes and proteins that participate in DNA damage responses in plants. Some of them may be involved in general responses to stress, but others are candidate genes for specific involvement in DNA repair. Our results open a number of new avenues for researching and improving plant resistance to DNA injury
    corecore