2,894 research outputs found

    Self-Stimulated Capillary Jet

    Get PDF
    Inspired by Savart’s pioneering work, we study the self-stimulated dynamics of a capillary jet. The feedback loop is realized by extracting surface perturbations from a section of the jet itself via a laserphotodiode pair, whose amplified signal drives an electromechanical actuator that, in turn, produces pressure perturbations at the exit chamber. Under specific conditions, this loop establishes phase-locked stimulation regimes that overcome the otherwise random natural breakup. For each laser position along the jet, the gain of the amplifier acts as a selector across a discrete set of observable frequencies. The main observed features are explained by a linear theory that combines the transfer function of each stage in the loop. Our findings are relevant to continuous inkjet technologies for the production of equally sized droplets.Spanish Research Agency Ministerio de Ciencia e Innovación and ERDF Project PGC2018-099217-B-I0

    The breakup length of harmonically stimulated capillary jets

    Get PDF
    A simple transfer function that can predict the breakup length of a pressure-modulated capillary jet is rigorously deduced from first principles. In this paper, the initial velocity modulation of a stimulated jet is given in terms of its pressure amplitude by means of a generalized Bernoulli equation, which in turn is connected to the breakup time through a two-mode linear analysis. The predicted breakup length is compared against experimental results with water jets emerging from a thin 1 mm-diameter orifice for different pressure modulations. These experiments agree better with the presented theoretical prediction than with a previously established model.Spanish Government under Contract No. FIS2011-25161Junta de Andalucía under Contract Nos. P09-FQM-4584 and P11- FQM-7919EPSRC-UK (Grant No. EP/H018913/1)Royal SocietyJohn Fell Oxford University Press (OUP) Research Fun

    Identifying past social-ecological thresholds to understand long-term temporal dynamics in Spain

    Full text link
    A thorough understanding of long-term temporal social-ecological dynamics at the national scale helps to explain the current condition of a country’s ecosystems and to support environmental policies to tackle future sustainability challenges. We aimed to develop a methodological approach to understand past long-term (1960-2010) social-ecological dynamics in Spain. First, we developed a methodical framework that allowed us to explore complex social-ecological dynamics among biodiversity, ecosystem services, human well-being, drivers of change, and institutional responses. Second, we compiled 21 long-term, national-scale indicators and analyzed their temporal relationships through a redundancy analysis. Third, we used a Bayesian change point analysis to detect evidence of past social-ecological thresholds and historical time periods. Our results revealed that Spain has passed through four socialecological thresholds that define five different time periods of nature and society relationships. Finally, we discussed how the proposed methodological approach helps to reinterpret national-level ecosystem indicators through a new conceptual lens to develop a more systems-based way of understanding long-term social-ecological patterns and dynamicsThis work was supported by the Biodiversity Foundation (http://www.fundacion-biodiversidad.es/) of the Spanish Ministry of Agriculture, Food and Environment. Partial financial support was also provided by the Ministry of Economy and Competitiveness of Spain (project CGL2014-53782-P: ECOGRADIENTES). The Spanish National Institute for Agriculture and Food Research and Technology (INIA) funded Marina García-Llorente as part of the European Social Fund. Blanca González García-Mon participated in this article as a “la Caixa” Banking Foundation scholar. The funders had no role in the study design, data collection and analysis, preparation of the report, or the decision to submit the study for publicatio

    Planktonic cyanobacteria from the Abreus Reservoir, Cienfuegos, Cuba

    Get PDF
    The study of the cyanobacteria that make up the phytoplankton community of reservoirs is very important due to the production of toxins by some phytoplankton taxa. The composition and abundance of cyanobacteria and their relationship to physicochemical variables was determined during six months (March, April, June, September, November and December) in 2018 at five stations in the Abreus Reservoir, which is located in the south center of the Cienfuegos province (Cuba). Eleven new taxa were observed in the reservoir grouped into seven families, 14 genera, and 34 species. The toxigenic genera Microcystis and Raphidiopsis were observed at all collection points throughout the year, presenting a potentially persistent toxicity threat in this reservoir. Semi-accumulative blooms were reported in September. Microcystis sp. and Raphidiopsis sp. were the most abundant genera during observed blooms. The abundance of some cyanobacterial genera, including Microcystis, Aphanocapsa, Raphidiopsis and Dolichospermum, were strongly correlated with water temperature and transparency. Microcystin values are reported for the first time in Abreus Reservoir

    Anomaly in temperature dependence of thermal transport of two hydrogen-bonded glass-forming liquids

    Get PDF
    6 págs.; 3 figs.; PACS number s : 66.70. f, 63.50. x, 65.20. w, 65.60. aThe thermal conductivity of two molecular glasses (ethanol and 1-propanol) decrease with increasing temperature up to their glass transitions at Tg 97 and 98 K, respectively. Within their supercooled liquid phases, the conductivity increases with rising temperature up to a maximum which roughly coincides with the liquidus (or melting temperatures Tm 159 K and Tm 149 K, respectively). From there on, the conductivity decreases with increasing temperature, a behavior common to most liquids examined so far, exception made of liquid water. The origin of the rather different dependencies with temperature of thermal transport is understood as a competition between phonon-assisted and diffusive transport effects which are amenable to experiments using high resolution quasielastic neutron scattering and visible and ultraviolet Brillouin light-scattering spectroscopies. © 2007 The American Physical Society.Peer Reviewe

    Fabrication and deposition of copper and copper oxide nanoparticles by laser ablation in open air

    Get PDF
    The proximity of the “post-antibiotic era”, where infections and minor injuries could be a cause of death, there are urges to seek an alternative for the cure of infectious diseases. Copper nanoparticles and their huge potential as a bactericidal agent could be a solution. In this work, Cu and Cu oxide nanoparticles were synthesized by laser ablation in open air and in argon atmosphere using 532 and 1064 nm radiation generated by nanosecond and picosecond Nd:YVO4 lasers, respectively, to be directly deposited onto Ti substrates. Size, morphology, composition and the crystalline structure of the produced nanoparticles have been studied by the means of field emission scanning electron microscopy (FESEM), high resolution transmission electron microscopy (HRTEM), the energy dispersive spectroscopy of X-rays (EDS), selected area electron diffraction (SAED) and X-ray diffraction (XRD). The UV-VIS absorbance of the thin layer of nanoparticles was also measured, and the antibacterial capacity of the obtained deposits tested against Staphylococcus aureus. The obtained deposits consisted of porous coatings composed of copper and copper oxide nanoparticles interconnected to form chain-like aggregates. The use of the argon atmosphere contributed to reduce significantly the formation of Cu oxide species. The synthesized and deposited nanoparticles exhibited an inhibitory effect upon S. aureus.Peer ReviewedPostprint (published version

    CCR5Δ32 variant and cardiovascular disease in patients with rheumatoid arthritis: a cohort study

    Get PDF
    Introduction The aim of our study was to analyze the influence of the CCR5Δ32 polymorphism in the risk of cardiovascular (CV) events and subclinical atherosclerosis among patients with rheumatoid arthritis (RA). Methods A total of 645 patients fulfilling the American Rheumatism Association 1987 revised classification criteria for RA were studied. Patients were genotyped for the CCR5 rs333 polymorphism using predesigned TaqMan assays. Also, HLA DRB1 genotyping was performed using molecular-based methods. Carotid intima-media thickness, flow-mediated endothelium-dependent dilatation (FMD) and endothelium-independent vasodilatation, which were used as surrogate markers of subclinical atherosclerosis, were measured in a subgroup of patients with no clinical CV disease. Results A lower frequency of carriers of the CCR5Δ32 allele among patients with CV events (3.4% versus 11.3%, P = 0.025, odds ratio 0.28, 95% confidence interval (95% CI) 0.06 to 0.89) was observed. However, after adjusting for gender, age at time of RA diagnosis, and the presence of shared epitope, rheumatoid factor and classic CV risk factors in the Cox regression analysis, this reduction of CV events in CCR5Δ32 allele carriers was slightly outside the range of significance (P = 0.097; hazard ratio 0.37 (95% CI 0.12 to 1.19)). Carriers of the CCR5Δ32 deletion also showed higher FMD values than the remaining patients (CCR5/CCR5Δ32 patients: 7.03% ± 6.61% versus CCR5/CCR5 patients: 5.51% ± 4.66%). This difference was statistically significant when analysis of covariance was performed (P = 0.024). Conclusions Our results show a potential influence of the CCR5Δ32 deletion on the risk of CV disease among patients with RA. This may be due to a protective effect of this allelic variant against the development of vascular endothelial dysfunction

    Colloidal mobilization of arsenic from mining-affected soils by surface runoff

    Get PDF
    Received 2 June 2015, Revised 2 September 2015, Accepted 24 September 2015, Available online 23 October 2015Scorodite-rich wastes left as a legacy of mining and smelting operations pose a threat to environmental health. Colloids formed by the weathering of processing wastes may control the release of arsenic (As) into surface waters. At a former mine site in Madrid (Spain), we investigated the mobilization of colloidal As by surface runoff from weathered processing wastes and from sediments in the bed of a draining creek and a downstream sedimentation-pond. Colloids mobilized by surface runoff during simulated rain events were characterized for their composition, structure and mode of As uptake using asymmetric flow field-flow fractionation coupled to inductively plasma mass spectrometry (AF4-ICP-MS) and X-ray absorption spectroscopy (XAS) at the As and Fe K-edges. Colloidal scorodite mobilized in surface runoff from the waste pile is acting as a mobile As carrier. In surface runoff from the river bed and the sedimentation pond, ferrihydrite was identified as the dominant As-bearing colloidal phase. The results from this study suggest that mobilization of As-bearing colloids by surface runoff may play an important role in the dispersion of As from metallurgical wastes deposited above ground and needs to be considered in risk assessment.The Spanish Ministry of Economy and Competitiveness (research project CGL 2010-17434) supported this study.A. Gomez-Gonzalez was supported by the Ph.D. Spanish FPI fellow-ship (BES-2011-046461) and by graduate students (EEBB-I-14-08063) programs.Peer reviewe

    Simulations of Gas Transport in Membranes Based on Polynorbornenes Functionalized with Substituted Imide Side Groups

    Get PDF
    This paper studies the diffusive and sorption steps of several gases across membranes cast from poly(N-phenyl-exo,endo-norbornene-5,6-dicarboximide) chloroform solutions. Chains packing effects on gas transport was investigated by conducting a parallel study on the permeation characteristics of membranes cast from hydrogenated poly(N-phenyl-exo,endo-norbornene-5,6-dicarboximide) chloroform solutions. The permeability coefficients of several gases in the two membranes were measured finding that hydrogenation of the norbornene moieties decreases gas permeability. The transition states approach was used to determine the trajectories of the gases in the two types of membranes from which the diffusion coefficients were obtained. Monte Carlo techniques based on the Widom method were used to simulate gas sorption process as a function of pressure. The values of the solubility coefficients thus obtained undergo a relatively sharp drop at low pressures approaching to a constant value as pressure increases. With the exception of carbon dioxide, pretty good agreement between the experimental and simulated values of the permeability coefficient is found for the gases studied.This work was supported by Comunidad de Madrid (CAM projects: GR/MAT/0810/2004; S-0505/MAT/0227) and CICYT (projects: MAT-2005-05648-C02-01, CTQ2005-04710/BQU; MAT2004-01347)
    • …
    corecore