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Abstract

per studies the diffusive and sorption steps of several gases across membranes cast from poly(N-phenyl-exo,endo-
e-5,6-dicarboximide) chloroform solutions. Chains packing effects on gas transport was investigated by conducting a 
udy on the permeation characteristics of membranes cast from hydrogenated poly(N-phenyl-exo,endo-norbornene-5,6-
imide) chloroform solutions. The perme-ability coefficients of several gases in the two membranes were measured 
at hydrogenation of the norbornene moieties decreases gas permeability. The transition states approach was used to 

ne the trajectories of the gases in the two types of membranes from which the diffusion coefficients were obtained. 
arlo techniques based on the Widom method were used to simulate gas sorption process as a function of pressure. The 
 the solubility coefficients thus obtained undergo a relatively sharp drop at low pressures approaching to a constant 
as pressure increases. With the exception of carbon dioxide, pretty good agreement between the experimental and 

Corresponding author. Tel.: +34 91 5622900; fax: +34 91 5644853. E-mail address: riande@ictp.csic.es (E. Riande).
simulated values of the permeability coefficient is found for the gases studied.
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gas permeability is to simulate the trajectories of dif-
ies in membranes by molecular dynamics [35,36].
y-state regime is reached, the diffusion coefficient
from the mean-square displacements of the diffu-
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is the pressure in the upstream chamber, V the
the downstream chamber, T the absolute tem-

nd l and A are, respectively, the thickness and
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t 30 Å with periodic boundary conditions (PBC) to

ensity of approximately 1.20 g/cm3 for PNDCI close

e of 1.24 g/cm3 found from pycnometric measure-
imization of conformational energy of the polymer
as accomplished using the Materials Studio 3.2 [65]

modelling package and the pcff91 [66]. The van der

3



Waals and C
by atom ba
cycles were
from 300 t
Both the h
50 K increm
on the initi
last confor
respect to b
and NPT d

In the se
G = 100 int
partition fu
sant molec
protocol w
is fluctuatin
deviation, Δ
finding an
MD compu

W(δ) = ex

Obviously,
displaceme

Assumi
of the poly
the center
tion of the
and instant
and a direc
between th
on r = Rm +
atomic mo
computed a
one of the
all orientat
over its cen
paper we re
ticles with
produce th
tion over a
positions. T
field are co
parameters
styrene, Fr

Table 3
Lennard–Jone
polymer matr

Difussant

H2

N2

O2

CO2

CO
CH4

nd H
n sim
rese
trix
n de
e wh
ility
nt m

, δ, θ

C rep
ising
l m a
n po

m) =

n th
olec
ed th
h ato

n∏
i=1

Z

n is
ox.
cha
le o

ed fr

−k

er co
the

trix,
grid
oulombic non-bonding interactions were calculated
sed and Ewald methods [67], respectively. Annealing

simulated by MD trajectories that heated the lattice
o 2000 K and then cooled it down back to 300 K.
eating and cooling processes were carried out with

ents and 1 ps time step. In this way any dependence
al conformation was eliminated. The energy of the
mation obtained by annealing was minimized with
ond lengths, bond angles and rotations using NVT

ynamics of 500 and 100 ps, respectively, at 300 K.
cond step, each side of the cubic box was divided in
ervals thus obtaining a grid containing 106 cells. The
nction and free energy arising from placing a diffu-
ule in a randomly chosen cell was computed using a
hich assumes that each atom of the polymer matrix
g about its mean position with a root mean-square
, known as smearing factor [39]. The probability of

atom i of the polymer matrix at a distance δ from the
ted main position is given by

p

(−δ2

2Δ2

)
(5)

the probability depends on the magnitude of the
nt δ, but not on its direction.
ng that a molecule of diffusant gas is located in cell m
meric matrix, representing by Rm the vector joining
of masses of the gas molecule with the main posi-
matrix i atom and by �i the vector joining the main
aneous positions of atom i (i.e. �i has a module δ

tion governed by two angles θ and φ) the interaction
e matrix atom and the diffusant molecule will depend

�i. In previous publications we have treated poly-
lecules as separated atoms, so that the energy was
s sum of interactions of the matrix atom with each
atoms of the diffusant molecule and averaged over
ions that the diffusant may adopt through rotations
ter of mass [41,42,63,64,68]. However, in the present
present all the diffusant molecules by spherical par-

energetic parameters adjusted in such a way that they
e same interaction that would be obtained by addi-
ll the atoms in the molecule and average over all the

[70] a
betwee

Rep
the ma
entatio
and th
probab
diffusa

Wi(Rm

where
tion ar
the cel
its mai

Zm,i(R

The
sant m
obtain
for eac

Zm =

where
cubic b

The
molecu
obtain

	Fm =
Aft

lattice,
the ma
at each
hese averaged parameters optimized for pcff force
llected in Table 3. Kucukpinar et al. [69] used this
in permeability study of these gases in copolymers of
ied et al. in poly(2,6-dimethyl-1,4-phenylene oxide)

s (6, 9) parameters employed to compute the interaction between
ix and diffusant gas molecules appearing in Eqs. (6) and (7)
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diffusion coefficient for hydrogen.

5



D at short t
sampling.

The valu
in PNDCI
respectivel
results for
work follow
in the sens
Moreover
of the sam
most cases
coefficients
respectivel
At the othe
30% lower
values of th
higher than
ence of cha
is better refl
dioxide wh

Simulat
employing
insertion/re
according t
energetic a
the polyme
we try to in
m. This pro
	Fm given
the gas as a
to n + 1. Th
weight give

σm,i;n→n+1

where μ is
ber of mole
account tha
Eq. (14) ca

σm,i;n→n+1

By the s
removal of

σm,i;n→n−1

The num
sure and vo

σm,i;n→n+1

and

σm,i;n→n−1

addi
mole
ed b
ox i

ngth
ided
hen

ng. T
can b

+1 =

rem

−1 =

wor
part

ions,
up a
iden
a c
. (1
d (N
emb

on of
)3 al

+1 =
the
mole

−1 =
pro

cubi
cal w

+1 =

−1 =

rtio
out
of t

. At e
a vo

ergy
es, n
of th
int
r x w

i,m. W
imes presumably is a consequence of poor statistical

es simulated for the diffusion coefficient of the gases
and H-PNDCI matrices are shown in Tables 1 and 2,
y. With the exception of carbon dioxide, the simulated
the diffusion coefficients of the gases studied in this

the same trends observed in the experimental ones
e that D(H2) � D(O2) > D(N2) > D(CO) > D(CH4).

not only the experimental and simulated values are
e order of magnitude, but also are rather close in
. For example, the simulated value for the diffusion
of H2 in the PNDCI and H-PNDCI membranes are,

y, 125% and 45% higher than the experimental ones.
r extreme, the simulated values of D for CO are about
than the experimental ones. Moreover the simulated
e diffusion coefficients of most gases in PNDCI are
those simulated in H-PNDCI membranes. The influ-
ins packing efficiency on hindering the diffusive step
ected in the simulated diffusion coefficient of carbon
ich drops from 6.94 to 2.18 in 10−9 cm2/s units.
ions of the solubility process were performed
a modified Widom method consisting on series of
moval of gas molecules into/from the polymer matrix
o probabilities computed by taking into account both
nd geometrical factors [41,42]. We thus assume that
r matrix contains n molecules of the diffusant gas and
sert a new one (particle number n + 1) at grid position
cess implies a change in the free energy of the system
by Eq. (9) and a change in the chemical potential of
result of increasing the number of molecules from n

erefore, the process of insertion will have a statistical
n by

= exp

[
−μ(n + 1) − μ(N) − 	Fm

kT

]
(14)

the chemical potential of the gas and N is the num-
cules at equilibrium under a pressure p. Taking into
t μ = μ + kT ln c, where c is the gas concentration,

n be written as

= N

n + 1
exp

(−	Fm

kT

)
(15)

ame token, the statistical weight associated with the
a particle of gas from the cell m is given by

= n − 1

N
exp

(
	Fm

kT

)
(16)

ber of molecules at equilibrium, N, depends on pres-
lume so that Eqs. (15) and (16) can be written as

= pV

(n + 1)kT
exp

(−	Fm

kT

)
(17)

An
of the
occupi
cubic b
side le
it is div
filled w
sampli
effect

σ′
i;n→n

For

σ′
r;n→n

It is
ber of
condit
we set
boxes,
within
on Eqs
repeate
the ens
inserti
(LNbox

σi;n→n

On
of the

σi;n→n
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uation
grid po
numbe
with p
= kT (n − 1)

pV
exp

(
	Fm

kT

)
(18)

position m
of one part

An inse
inserted wi
tional statistical weight is associated with the volume
cule of the gas. Since the number of grid positions
y the volume Vmol of each molecule inserted in the
s g = Vmol(G/L)3, where L and G are, respectively, the
of the cubic box and the number of intervals in which
, the whole volume of the matrix will be completely
we succeed in 1 out of every grid position during
he geometric statistical weight associated with this
e defined as

1

g
= L3

G3Vmol
(19)

oval:

g = G3Vmol

L3 (20)

thy noting that at low pressures the equilibrium num-
icles of an ideal gas in the cubic box, under STP
may be smaller than 1. To avoid this inconvenience
n ensemble of (Nbox)3 boxes, in this simulation 63

tical to that containing the polymer matrix, packed
ube with side LNbox. Then the volume appearing
9) and (20) is (LNbox)3, while each grid position is
box)3 times with periodic boundary conditions within
le. The overall statistical weight associated with the
a molecule at the m grid position of the box of volume
ready containing n molecules of gas is

σm,i;n→n+1σ
′
i;n→n+1 (21)

other hand, the overall statistical weight of removal
cule of gas is

σm,i;n→n−1σ
′
i;n→n−1 (22)

bability of insertion and removal of a gas molecule
c box can be obtained from the normalization of the
eight of Eqs. (21) and (22), that is

σi;n→n+1

σi;n→n+1 + σi;n→n−1
(23)

σi;n→n−1

σi;n→n+1 + σi;n→n−1
(24)

n and removal of gas molecules in the polymer were
using Monte Carlo techniques. The Monte Carlo sim-
he sorption process consisted in 50 series of 5 × 106

ach cycle, a grid position m within the polymer matrix
lume (LNbox)3 was randomly selected. The value of
at that position, Fm, together with the number of

, previously loaded into the system allows the eval-
e probabilities of insertion pi,m and removal pr,m at

m according to Eqs. (23) and (24). Then, a random
ithin the interval 0–1 was generated and compared
hen x ≤ pi,m, an attempt to insert a new particle into
was performed, otherwise, i.e. when x > pi,m, removal
icle from position m was attempted.
rtion attempt was successful, i.e. a new particle was
th its center of masses in position m, when none of
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Table 4
Values of the free volume in the cubic box determined by Eq. (25) (method 1)
and Eq. (26) (method 2)

Matrix fV, method 1 (%) fV, method 2 (%)

Poly-PhNDI 19.72 20.08
Poly-HPhND

the n partic
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volume occ
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solubility c
to plasticiz
species.

Table 5
Experimental and simulated values of the solubility coefficient for different gases
in PNDCI membranes, at 30 ◦C and 1 bar

Gas 103 × Sexp 103 × S∗
simul 103 × S∗∗

simul

H2 0.8 1.4 0.5
1.4 2.9 1.1
2.3 4.4 1.8

63.2 11.4 5.7
3.6 3.5 1.5
7.5 8.8 4.6

nd double stars indicated solubility coefficients simulated using for V in
) and (18) the volume of the cubic box and the free volume, respectively.
es of the solubility coefficient are given in cm3(STP)/cm3 cm Hg.

ental and simulated values of the solubility coefficient for different gases
DCI, at 30 ◦C and 1 bar

103 × Sexp 103 × S∗
simul 103 × S∗∗

simul

0.6 1.5 0.5
1.3 3.8 1.5
2.1 5.3 2.1

62.6 13.7 7.2
2.8 4.5 1.8
8.3 10.8 6.01

nd double stars indicated solubility coefficients simulated using for V in
) and
es of

ulat
coef
. 7 a

the f
n tha
achi
or ex
solubility of glassy polymers has traditionally been inter-
in terms of the dual mode model that assumes the polymer
as made up of a continuous phase where gas absorp-
I 18.58 18.40

les previously loaded into the system has its center
within a distance smaller than a molecular diameter
on m, i.e. when the new loaded molecule would not
th any of the previously loaded particles. However,
ttempts that would place the new molecule overlap-

previously loaded one are very infrequent because
of molecules loaded into the matrix is much smaller
ould be allowed by the ratio among the volumes of
nd the molecule. Consequently, most of the insertion

ke place at well-separated points. For this reason, no
s among molecules of solute were considered when
the exponential of energy appearing in Eqs. (17) and
t the hard spheres potential, which is implicit in the
ding overlapping among molecules of solute. On the
, a removal attempt was successful, i.e. one particle
ed from the system when its center of masses lies
istance smaller than the molecular radius from the
tion, i.e. when the tested position is one among the
tions occupied by one of the molecules contained in
Of course, failed attempts to either insert or remove

ave the system unchanged.
ches of sorption simulations were made. In the first
olume V used in Eqs. (17) and (18) was that of the

while in the second one, the volume used was the
e, that is fV = V − ∑n

i VvdW;i where VvdW;i is the
als volume of atom i contained in the cubic box of
The values of the free volume fraction (Table 4), fV
ated by the two methods indicated by the following
s:

cupied sites

(Nbox)3 (25)

− Vatoms (26)

l is the cell volume and Vatoms is the van der Waals
upied by the atoms of the matrix.
f the experimental solubility coefficients for differ-
PNDCI and H-PNDCI membranes are shown in the

umn of Tables 5 and 6, respectively. The second and
ns of the tables present the simulated values for the
ond batch simulations. With the exception of carbon

e solubility coefficients simulated for the gases are
ement with the experimental results independently
V or fV are used in Eqs. (17) and (18). The strong

N2

O2

CO2

CO
CH4

Single a
Eqs. (17
The valu

Table 6
Experim
in H-PN

Gas

H2

N2

O2

CO2

CO
CH4

Single a
Eqs. (17
The valu

Sim
ubility
in Figs
using
be see
sure re
behavi
the gas
preted
matrix
y between experimental and simulated values of the
oefficient of CO2 in the polymers could be attributed
ing effects that enhance the solubility of these

Fig. 7. Variat
gases in PND
using the free
(18) the volume of the cubic box and the free volume, respectively.
the solubility coefficient are given in cm3(STP)/cm3 cm Hg.

ed curves showing the pressure dependence of the sol-
ficient for PNDCI and H-PNDCI, at 30 ◦C, are shown
nd 8, respectively. In the inset the curves simulated
ree volume in Eqs. (17) and (18) are shown. It can
t the isotherms undergo a sharp decrease at low pres-
ng a nearly constant value at moderate pressures. This
perimentally found for the pressure dependence of
ion of the simulated solubility coefficient with pressure of different
CI membranes at 30 ◦C. Inset: the simulations were performed
volume instead of the volume of the cubic box.
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Table 7
Comparison between the experimental permeability coefficient, Pexp, and the
simulated results using the volume V, P*, and the free volume, P**, for the
simulations of the solubility coefficient

Gas PNDCI membranes H-PNDCI membranes

Pexp

(barrers)
P*
(barrers)

P**
(barrers)

Pexp

(barrers)
P*
(barrers)

P**
(barrers)

H2 11.0 40.23 14.30 7.22 24.6 8.40
N2 0.31 0.31 0.12 0.12 0.38 0.15
O2 1.44 0.71 0.28 0.66 0.81 0.31
CO2 11.44 0.79 0.40 4.51 0.30 0.16
CO 0.52 0.37 0.15 0.21 0.24 0.10
CH4 0.54

The results w

,6-di
, resp
tabl
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I an
ent
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e of

me
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ranes

nclu

insp
ients
of th
I me
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tion.
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lar m

wled
ion of the simulated solubility coefficient of gases in poly-HNDI
t 30 ◦C. The curves in the inset were computed using the free
d of the volume of the cubic cell.

. Microcavities that account for the volume excess in
mers disperse in the continuous phase act like Lang-
here adsorption processes take place. According to

the pressure dependence of the solubility coefficient

C′
Hb

1 + bp
(27)

s Henry’s constant, C′
H is the concentration of gas in

ites whereas b is a parameter related with the affinity
r. The isotherms computed using V and fV are nearly
gh the former are slightly shifted vertically to higher
g to the fact that the values of kD obtained with V are
those obtained with fV. Eq. (27) fits to the computed

giving reasonable values for the Henry’s solubility
ough the gas concentration in Langmuir sites seems
estimated. As an example, the values of kD, C′

H and
n PNDCI obtained using the volume of the cubic
computation are, 4.0 × 10−4 cm3(STP)/cm3 cm Hg,
P)/cm3 and 7.2 × 10−3 (cm Hg)−1, respectively. If
lume is used, then the respective values in the units
re 2.4 × 10−4, 0.3 and 7.0 × 10−3. For H-PNDCI the
parameters for oxygen are 3.9 × 10−4, 7.0 and 0.3

the computations and 2.3 × 10−4, 1.0 and 6.0 if fV is
e that in all the cases the values simulated for C′

H are
ll if the experimental values reported for other sys-
igh glass transition temperature are taken as a basis

son [48].
7 the values of the permeability coefficients, at 30 ◦C
simulated using V and fV for the computation of
ity coefficient are compared with the experimental
spection of the data shows a rather good agreement
perimental and simulated values for all the gases,
ception of carbon dioxide. In this latter case, the

poly(2
branes
accoun
consid
tal val
PNDC
agreem
the pe
the us
Widom
perme
memb

4. Co
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coeffic
bonds
PNDC
packin
saturat

The
cient f
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two to
volum
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all the
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bility c
simula
reason
particu

Ackno
ty coefficient is more than one order of magnitude
experimental one as a consequence of the low sol-
fficient obtained by simulation. The same behavior
ed by Fried et al. [70] and Heuchel et al. [71] in

This wo
projects: G
(projects:
MAT2004-
0.51 0.26 0.15 0.35 0.19

ere measured and computed at T = 300 K and p = 1 bar.

methyl-1,4-phenylene oxide) and polyimide mem-
ectively. As indicated above, plasticizing effects not

e for in simulations seems to be the cause of the
le discrepancy between the simulated and experimen-
f the permeability coefficient of carbon dioxide in

d H-PNDCI membranes. However, the rather good
between the simulated and experimental results for
bility coefficients of the other gases encourages
the TS approach for diffusion and the modified
thod for sorption as valuable tools to predict gas
as a function of the chemical structure of glassy

.

sions

ection of the experimental and simulated diffusion
of the gases shows that hydrogenation of the double

e norbornene residues hinders gas transport in the H-
mbranes presumably as consequence of increasing
lume efficiency facilitated by chain mobility of the
ouble bonds.
ssure dependence of the simulated solubility coeffi-
s the same trends observed in the sorption processes

embranes. In general the values of the solubility coef-
puted using the total volume of the box cell are

e times higher than those computed utilizing the free

ent between simulated and experimental results for
nitudes studied in the present work is pretty good,
teworthy exception of CO2, and specially its solu-
cients which is substantially underestimated by the
However, at this moment, we cannot provide any

explanation for such disagreement in the case of this
olecule.
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Nomenc

A
b

c
C
C′

H

D
E
fV
F
g

G
k
kD

l
L
m
n

N

p

pi

p0

P

PBC
r
Rij

Rm

S
t
T
V
W(· · ·)

Z

Greek le
γ

δ

Δ

time lag (s) (in experimental part); orientational
angle (◦) (in simulations)
chemical potential
statistical weight; van der Waals parameter (Å) in

enc

. Kes
erscie
Yamp
Gas a
Agu

amet
Ghos
fone:
92) 9
B. Mo
l ann
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Maru
a ble

(1987
. McH
gas-tr
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Ghos
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92) 1
R. Co
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90) 2
. Kim

terial
. Kim
sepa

yimid
lature

permeation area (cm2)
parameter related with the gas-polymer affinity
((cm Hg)−1)
concentration (cm3(STP)/cm3)
normalization constant
gas concentration in Langmuir sites
(cm3(STP)/cm3)
diffusion coefficient (cm2/s)
energy
free volume in the PBC box
Hemholtz free energy
number of grid cells occupied by the volume of a
gas molecule in the PBC box
number of intervals in which L is divided
Boltzmann’s constant
Henry’s solubility coefficient
(cm3(STP)/cm3 cm Hg)
thickness of the membrane (cm)
side length of the PBC box (Å)
mass of the gas particle
number of particles of the gas in the PBC box out
of equilibrium under a pressure p
number of particles of the gas in the PBC box at
equilibrium under a pressure p
pressure of the gas in the downstream chamber
(cm Hg)
probability of insertion or removal of a gas parti-
cle in the cell i
pressure of the gas in the upstream chamber
(cm Hg)
permeability coefficient (barrer =
10−10 cm3(STP) cm/(cm2 s cm Hg))
periodic boundary conditions
vector position (cm)
rate of passage of a gas particle from site i to j in
the PBC box
vector joining the center of mass of cell m with the
equilibrium position of the atom i of the matrix in
the PBC box
solubility coefficient (cm3(STP)/cm3 cm Hg)
time (s)
temperature (K)
volume (cm3)
probability of finding an atom of the matrix in
the PBC box in the conditions indicated between
brackets
partition function

tters
weighting factor

θ

μ

σ

τ

Refer

[1] R.F
Int

[2] Y.
for

[3] M.
tetr

[4] K.
sul
(19

[5] M.
ma
Po

[6] M.
me

[7] N.
and
34

[8] J.S
on
(19

[9] M.
of

[10] J.S
sul
261

[11] J.S
sul
rin

[12] C.L
tra

[13] C.L
pol

[14] C.L
pol
Ph

[15] C.L
dih

[16] K.
sul

[17] J.S
pho
(19

[18] M.
hyd
(19

[19] T.H
ma

[20] T.H
gas
pol
deviation of an atom of the polymeric matrix in
the PBC box from the equilibrium position
smearing factor

[21] S.A. Ste
relations
gas-mixt

[22] K.C. O’B
in polyet
Table 3
residence time (s)

es

ting, A.K. Fritzsch, Polymeric Gas Separation Membranes, Wiley-
nce, New York, 1993.
olskii, I. Pinnau, B.D. Freeman, Materials Science of Membranes
nd Vapor Separation, Wiley-Interscience, New York, 2006.

ilar-Vega, D.R. Paul, Gas-transport properties of poly(2,2,4,4-
hyl cyclobutane carbonate), Polym. Sci.: Phys. Ed. 31 (1993) 991.
al, R.T. Chern, Aryl-nitration of poly(phenylene oxide) and poly-
structural characterization and gas permeability, J. Membr. Sci. 72
1.
e, W.J. Koros, D.R. Paul, Effects of molecular-structure and ther-

ealing on gas-transport in 2-tetramethyl bisphenol-a polymer, J.
ci.: Phys. Ed. 26 (1988) 1931.
llums, W.J. Koros, G.R. Husk, D.R. Paul, Study of microporous

ne structure by image analysis, J. Membr. Sci. 46 (1989) 93.
ganandam, D.R. Paul, Evaluation of substituted polycarbonates
nd with polystyrene as gas separation membranes, J. Membr. Sci.
) 185.
attie, W.J. Koros, D.R. Paul, Effect of isopropylidene replacement
ansport properties of polycarbonates, J. Polym. Sci.: Phys. Ed. 29
31.
llums, W.J. Koros, J.C. Schmidhauser, Gas separation properties
iindane polycarbonate, J. Membr. Sci. 67 (1992) 75.
attie, W.J. Koros, D.R. Paul, Gas transport properties of poly-

s. 2. Effect of bisphenol connector groups, Polymer 32 (1991)

attie, W.J. Koros, D.R. Paul, Gas transport properties of poly-
s. 1. Role of symmetry of methyl group placement on bisphenol
lymer 32 (1991) 840.
ken, W.J. Koros, D.R. Paul, Effect of structural symmetry on gas
t properties of polysulfones, Macromolecules 25 (1992) 3424.
ken, W.J. Koros, D.R. Paul, Gas transport properties of biphenol
ones, Macromolecules 25 (1992) 3651.
tken, D.R. Paul, D.K. Mohanty, Gas-transport properties of
lether bissulfone)s and poly(arylether bisketone)s, J. Polym. Sci.:
. 31 (1993) 983.
ken, D.R. Paul, Gas transport properties of polysulfones based on
ynaphthalene isomers, J. Polym. Sci.: Phys. Ed. 31 (1993) 1061.

al, R.T. Chern, B.D. Freeman, Gas-permeability of radel—a poly-
J. Polym. Sci.: Phys. Ed. 31 (1993) 891.
attie, W.J. Koros, D.R. Paul, Gas transport properties of polysul-

3. Comparison of tetramethyl-substituted bisphenols, Polymer 33
701.
leman, W.J. Koros, Isomeric polyimides based on fluorinated dian-
and diamines for gas separation applications, J. Membr. Sci. 50

85.
, W.J. Koros, G.R. Husk, Advanced gas separation membrane

s: rigid aromatic polyimides, Sep. Sci. Technol. 23 (1988) 1611.
, W.J. Koros, G.R. Husk, K.C. O’Brien, Relationship between

ration properties and chemical structure in a series of aromatic
es, J. Membr. Sci. 37 (1988) 45.

rn, Y. Mi, H. Yamamoto, A.K. St. Clair, Structure permeability
hips of polyimide membranes—applications to the separation of
ures, J. Polym. Sci.: Phys. Ed. 27 (1989) 1887.
rien, W.J. Koros, G.R. Husk, Sorption of benzene and N-hexane

hylene, J. Membr. Sci. 35 (1988) 217.

9



[23] K. Tanak
substitue
prepared
B: Polym

[24] H. Kita,
on perm
containin

[25] L. Yang
permeati
imides, P

[26] M. Wess
mol. Che

[27] E. Heris
branes, P

[28] F.R. She
dioxide
Ed. 26 (1

[29] R.T. Che
in poly(p

[30] F.R. She
propertie
27 (1989

[31] R.T. Che
polymer

[32] S.J. Char
in aroma
Ed. 29 (1

[33] M. Agui
ethers, J.

[34] J. Zhang
orous ce

[35] D.N. Th
Polymer

[36] J.R. Frie
Permeab

[37] R.M. So
simulatio
J. Chem.

[38] F. Mülle
ular dyn

[39] A.A. Gu
Suter, D
116 (199

[40] B. Wido
[41] E. Saiz, M

tions of d
comparis

[42] P. Tiemb
and expe
Macrom

[43] E.Sh. Fi
Soloviev
ROMP p
Polymer

[44] B.R. Wil
average
norborne
(2003) 2

[45] B.R. Wi
transport
solubility

[46] V.I. Bond
Makovet
icon sub

[47] H. Chien
volume a
51.

. Yam
pov, S
tainin
. Kaw

h olig
mbran
. Tep
n in a
8.

Steinh
gular

. Do
ies of
. Part
. Zha
. de
polyn
5.
Pined
nde,

n temp
7.

A. T
s tran
exo-N
crom
Tlenk
s sorp
in gro
argas
Lópe
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.M. López-González, E. Riande, J. Guzmán, V. Compañ, Simula-
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