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A simple transfer function that can predict the breakup length of a pressure-modulated capillary jet is

rigorously deduced from first principles. In this paper, the initial velocity modulation of a stimulated

jet is given in terms of its pressure amplitude by means of a generalized Bernoulli equation, which in

turn is connected to the breakup time through a two-mode linear analysis. The predicted breakup

length is compared against experimental results with water jets emerging from a thin 1 mm-diameter

orifice for different pressure modulations. These experiments agree better with the presented theoreti-

cal prediction than with a previously established model. VC 2014 AIP Publishing LLC.

[http://dx.doi.org/10.1063/1.4894576]

The breakup of liquid jets into droplets due to the capillary

instability has been the focus of rigorous studies for more than

two centuries.1 The possibility of generating monodisperse

microdroplets has increased the attention to this subject beyond

its pure scientific interest.2 Some modern technologies, such as

2D and 3D inkjet printing in continuous-jet mode (CIJ),3 rely

on this breakup process, and fundamental research is needed if

the technology is to advance and overcome its current limits. In

particular, the prediction of the breakup length under controlled

stimulation by an electromagnetic or piezoelectric actuator is

often required. Practitioners have previously dealt with empiri-

cal transfer functions that relate stimulation and breakup lengths

without having the knowledge of the role of the relevant param-

eters. The problem is not so much the behavior of the actuator

as the link between the hydrodynamics of chamber from which

the jet emerges, the exit orifice and the jet itself. The present

work provides such a theory to address this, which is validated

with original experiments.

Consequently, the system under consideration is com-

posed by a pressurized chamber, a small round exit orifice

and an emerging capillary jet. Assuming that the liquid is

incompressible, the Navier–Stokes equation can be conven-

iently written as

q
@v

@t
þr pþ 1

2
qv2 þ qgz

� �
� q v�r� v� lr2v ¼ 0;

(1)

where q is the density of the liquid, l is the dynamic viscos-

ity, p and v are the pressure and velocity (with modulus v) as

functions of position r and time t; g is the gravitational accel-

eration, and z is the vertical coordinate. Integrating (1) along

the instantaneous streamline CðtÞ connecting any inner point

of the chamber (labeled with subscript “c”) and a point of

the emerged jet after the relaxation of its velocity profile

(subscript “j”) yields

q
ð

C
dr � @v

@t
þ pj � pc þ

1

2
q v2

j � v2
c

� �

þ q g zj � zcð Þ þ Dpvisc ¼ 0; (2)

where the third term in the left-hand side of (1) gives no

contribution and Dpvisc � �l
Ð
Cdr � r2v is the pressure

drop along the streamline due to viscous losses. Equation

(2) is an extended Bernoulli’s equation including an

unsteady inertial term and viscous losses. Standard text-

books in fluid mechanics (see, for instance, Ref. 4) derive,

as a rule, Bernoulli’s equation for more restrictive cases,

but the interested reader can find in Ref. 5 a very general

version, deduced in the same way that Equation (2), which

is a special case of it.

Some simplifications are in order:

(i) The dynamic pressure at the chamber, 1
2
qv2

c, is usually

negligible compared to that at the jet due to mass con-

servation and the difference in cross sectional areas at

these points.

(ii) The unsteady inertial term can be evaluated under the

assumption of plug profile to4

q
ð

C
dr � @v

@t
¼ q li

dvo

dt
¼ cc q li

dvj

dt
; (3)

where vo is the mean velocity at the exit orifice and li

is an inertial length, roughly equal to the exit orifice

length lo. The inertial length can be redefined to

account for the contribution of the regions adjacent to

the exit orifice. In Eq. (3), the contraction coefficient

cc � vo=vj ¼ D2
j =D2

o was used, with Dj the jet diame-

ter after relaxation of the velocity profile and Do is

the exit orifice diameter. The diameter ratio was stud-

ied experimentally in Ref. 6.a)helio@us.es
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(iii) Finally, the viscous losses can be estimated following

the classic work of Langhaar7 as:

Dpvisc ¼
64 lo

Reo Do

þ K

� �
1

2
qv2

o �
1

2
qv2

j ; (4)

where the Reynolds number at the exit orifice

has been defined as Reo � qvoDo=l and K is a dimen-

sionless constant usually called entrance correction

factor, for which several theoretical and

experimental investigations report values lying in the

range 2:11 < K < 2:45 (Ref. 8). Equation (4) does

not include the viscous losses during the relaxation of

the jet velocity profile, and is a good approximation

only when lo=DoReo � 1, i.e., for fully developed

Hagen–Poiseuille velocity profiles. If that is not the

case, (4) seems to correctly describe the viscous losses

with empirical values for K and lo.9

Given the previous assumptions, and writing vo in terms

of vj, Eq. (2) yields

peff ¼ c2
cK

1

2
qv2

j þ cc q li

dvj

dt
þ cc

32llo

D2
o

vj; (5)

where the effective pressure is defined as peff � pc þ
qgðzc � zjÞ � 2c=Dj and c is the surface tension. Equation

(5) directly relates the pressure in a given point in the cham-

ber to the jet velocity in the region where the profile has

relaxed to a plug one. In the steady basic flow, the jet veloc-

ity, denoted as v0, is obtained from the steady effective pres-

sure p0, by solving

p0 ¼ c2
cK

1

2
qv2

0 þ cc

32llo
D2

o

v0: (6)

The actuator modulates the pressure inside the chamber

harmonically. Therefore, the effective pressure reads

peff tð Þ ¼ p0 þ p1 cos xtð Þ ¼ p0 þ
1

2
p1eixt þ 1

2
p1e�ixt; (7)

where the amplitude of the effective pressure p1 is real and

x is the angular frequency of the modulation. This leads to a

perturbed jet velocity that, after linearization, becomes

vj tð Þ ¼ v0 þ
1

2
v1eixt þ 1

2
v�1e�ixt þ � � � ; (8)

where v�1 denotes the complex conjugate of the velocity am-

plitude. Scaling the velocity and pressures as v
^

1 � v1=v0 and

p
^

0 � p0=ð12 qv2
0Þ; p

^

1 � p1=
1
2
qv2

0Þ
�

, Eqs. (5), (7), and (8) give

v
^

1 ¼
p
^

1

2c2
cK þ Xr þ iXi

; (9)

where Xr and Xi are dimensionless parameters

Xr ¼ c2
c

64

Reo

lo
Do

; Xi ¼ cc

2x li

v0

; (10)

playing the roles of real and imaginary parts of an acoustic

impedance associated with the exit orifice. Physically, Xr

accounts for the resistance due to viscous dissipation and Xi

for the inertia of the liquid inside the exit orifice. Equation

(6) now reads p
^

0 ¼ c2
cK þ Xr.

The next step is to relate the perturbation of the jet veloc-

ity after the viscous relaxation with the breakup length. The

jet evolution is governed by capillary forces, so it is advanta-

geous to change the dimensionalization by scaling time with

the capillary time ½qD3
j =ð8cÞ�1=2

. In the following, a bar over

a symbol means “made dimensionless with the capillary

scales.” The new dimensionless velocity �v � v=½2c=ðqDjÞ�1=2

is related to the previous one v
^

by v
^ � v=v0 ¼ �v=We1=2;

where We � qDjv2
0=2c is the Weber number.

Provided that the Weber number is much greater than

unity, the temporal stability analysis applies:10,11 from a ref-

erence frame moving with the mean flow, the jet is periodi-

cally perturbed in the longitudinal coordinate with associated

dimensionless wavenumber �k � Dj x=2v0. As described in

Ref. 12, the perturbation amplitudes of both the jet shape and

velocity are related to the amplitudes of the dominant (grow-

ing for �k < 1) and subdominant (decaying) capillary modes.

Other decaying modes, the hydrodynamic modes, may be

present but their influence can be disregarded.12 The bound-

ary conditions at the nozzle must be translated into initial

conditions for the temporal evolution of a periodic liquid col-

umn. As the contact line is fixed, the initial conditions must

be purely impulsive, i.e., with velocity modulation and with-

out initial deformation. The amplitudes of the dominant and

subdominant capillary modes are given by

j�f dj ¼ �j�f sj ¼
1
2

�k

�ad � �as

j�v1j; (11)

where �ad � �adð�k ;OhÞ and �as � �asð�k ;OhÞ are the dimen-

sionless dominant and subdominant growth rates, respec-

tively, i.e., the relevant solutions of the classical Rayleigh’s

temporal dispersion relation,13,14 and Oh � l=ðq cDj=2Þ1=2

is the Ohnesorge number. Alternatively, approximate explicit

expressions for these growth rates can be obtained by means

of one-dimensional models,15 among which the averaged
model gives the quadratic dispersion relation

�a2ð1þ �k
2
=8Þ þ 3Oh �k

2
�a þ ð�k2 � �k

4Þ=2 ¼ 0; (12)

whose two solutions have errors of less than 0.5%.15

Taking into account the transfer function between the

perturbation of the pressure in the chamber and the jet veloc-

ity after relaxation, given by (9), the amplitude of the two

capillary modes are determined by

j�f dj ¼ �j�f sj ¼
ffiffiffiffiffiffiffi
We
p 1

2
�k

�ad � �as

jp^1jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2c2

cK þ Xr

� �2 þ X2
i

q : (13)

The subsequent evolution of the jet deformation is

j�f ðtÞj ¼ j�f dj½expð�ad�tÞ � expð�as�tÞ�: (14)

The condition j�f ð�tbÞj ¼ 1 accurately determines the breakup
time �tb as long as the non-linear part of the evolution is short

compared to �tb.12,16 For sufficiently long jets, the contribu-

tion of the subdominant mode to the jet evolution can be
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ignored and the term of the second exponential in Eq. (14)

can be dropped, giving explicitly

�tb ¼ �
1

�ad

log j�f dj
� �

: (15)

Multiplication by We1=2 (dimensionless velocity) and substi-

tution of (13) gives the dimensionless breakup length

�Lb ¼ �
ffiffiffiffiffiffiffi
We
p

�ad

log
1
2

�k
ffiffiffiffiffiffiffi
We
p

jp^1j

�ad � �asð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2c2

cK þ Xr

� �2 þ X2
i

q
2
4

3
5: (16)

The only previous transfer function relating these magni-

tudes is that of Orme,17 based on the unphysical assumption that

the modulation in pressure produces a modulation in the initial

jet radius, rather than in the velocity. In our notation, Orme’s

description reads j�f dj ¼ ð1þ p
^

1Þ1=4 � 1 for pressure perturba-

tions of arbitrary size, and

j�f dj ¼
1

4
p
^

1 (17)

for small stimulation amplitudes. Apart from the rigorous

deduction of (13) from first principles, the major differences

with (17) are: (i) the inclusion of inertia and viscous losses at

the orifice, (ii) the dependence of the initial perturbations on

the stimulation frequency through the wavenumber and

growth factors, and most importantly (iii) the factor We1=2 in

the argument of the logarithm. The latter results in a domi-

nant capillary mode �f d / v�1
0 , while Orme’s result (17) gives

�f d / v�2
0 .

In order to validate this theory, the experimental work

by Curry and Portig18 seems to be the best candidate.

However, as it happens with other experiments not designed

specifically for this comparison, some necessary parameters

were not provided. Therefore, an experimental setup,

sketched in Fig. 1 was developed in order to test (16). Pure

tri-distilled water (l¼ 1 mPa m�1, c¼ 0.072 N m, and

q¼ 997.6 kg/m3) was pumped from an open reservoir

towards a sealed chamber that was half-filled with air,

designed to act both as a pressure buffer and to trap impur-

ities and bubbles. The flow was then directed to a second

chamber, with one end consisting of a flexible rubber mem-

brane connected to a mechanical vibrator (LDS V201). This

vibrator imposed the harmonic pressure perturbations to the

fluid. The flow then continued to a 200 mm long cylindrical

chamber (50 mm in diameter), in which a 2 mm-thick disk,

with randomly positioned orifices, was placed close to the

inlet to suppress any large entry vortices and to help induce

the rapid development of the flow. The nozzle, a circular ori-

fice of 1.006 6 0.003 mm in diameter, was located at the op-

posite end of this chamber and made of a 100 6 5 lm thick

brass shim.

A high-resolution temperature-compensated pressure

sensor (Honeywell 40PC006G) was located on the side of

the cylindrical chamber, 12 mm away from the base of the

nozzle plate. This transducer monitored the static pressure

and the amplitude of its sinusoidal perturbation close to the

exit point. The reservoir, the pump, the chambers, and all

instruments were mounted on different breadboard tables in

order to avoid mechanical vibrations affecting the jet

breakup. Average values of p0 and p1 were then extracted

from data acquired over 3� 103 complete oscillations for

each experiment. The jet was visualized and the breakup

length was measured by means of a standard shadowgraphy

system coupled to a high-speed camera (Phantom V711). An

acquisition rate of 50 000 fps and exposure time of 2 ls were

used for all the experiments. Average breakup lengths,

Lb, were obtained by analysing a minimum of 20 breakup

events for each value of p1. A perturbation frequency of

680.0 6 0.5 Hz, i.e., close to maximum growth rate condi-

tions, was kept throughout all the experiments. An assem-

blage of representative images for different pressure

amplitudes is shown in Fig. 2. The velocity of the jet was

measured by two independent methods: (i) by measuring the

distance between two consecutive main drops and relating it

to the jet velocity as proposed in Refs. 19 and 20 or (ii) by

generating a single drop in the middle of the jet by means of

a single pressure pulse and recording its position as a func-

tion of time—its velocity and acceleration were then calcu-

lated by means of image analysis. In both cases, the initial

velocity and acceleration are 2.72 6 0.02 m/s and

9.1 6 0.1 m/s2, respectively. This leads to deviations from

the mean velocity (within the travel distances of interest) of

less than 5%. These small differences suggest, as expected, a

small effect of gravity and the surrounding air on the jet evo-

lution. From the flow rate, fixed to 1:725� 10�6 m3=s, a

FIG. 1. Schematic diagram of the experimental setup.

FIG. 2. Assemblage of representative frames from the high speed images for

different pressure perturbations amplitudes. There is a transition from front

pinching (top) to end pinching (bottom).
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contraction coefficient cc ¼ 0:795 is obtained as well as the

mean radii R and mean Weber and Ohnesorge numbers for

each breakup length (We ’ 50; Oh ’ 0:0056). Finally, the

entry correction factor is estimated as K ¼ 1:90 from (6)

with p0 ¼ 4320630 Pa and assuming a null value for lo.

Fig. 3 shows the results of our experiments compared

with the theoretical predictions. The estimated deviation in

slope (related with the growth rate of the dominant capillary

mode) is 2.5% and 4% in the initial amplitude of deforma-

tion, to be compared against 20% of Orme’s theory.

Although the acoustic impedances are roughly estimated in

the theory, their small values in our experiment suggest that

they are not the main sources of discrepancies. 1D numerical

calculations in the spirit of those performed in Ref. 21 could

be convenient to discern the accuracy of our linear approach.

Another, not explored, possible explanation could be an

unexpected decay of perturbations during the relaxation pro-

cess of the initial velocity profile. In this case, 3D axisym-

metric numerical simulations22 would be required to explore

this further.

The theory presented in this work provides a simple and

powerful tool that predicts the breakup length of pressure

modulated capillary jets, confirmed by the experiments

reported here. This theory could be employed to find both

the optimal design of stimulation heads, particularly of the

exit orifice, and the operating conditions to achieve pre-

scribed breakup lengths. In the case of a piezoelectric device,

the pressure modulation is not usually measured but pre-

dicted by a linear correlation with the voltage supply. Our

transfer function should be able to validate that correlation.

In addition, the modular construction of the transfer function

will allow the incorporation of improvements such as (i) the

hydrodynamics of the chamber and the exit orifice, (ii) the

effect of the viscous relaxation region of the jet, and (iii) the

subsequent jet evolution under different external conditions

(coflow, electrification, etc.) with mere substitution of the

corresponding dispersion relation.
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