81 research outputs found

    Assessment of the Performance of a Modified USBR Type II Stilling Basin by a Validated CFD Model

    Full text link
    [EN] The adaptation of existing dams is of paramount importance to face the challenge posed by climate change and new legal frameworks. Thus, it is crucial to optimize the design of stilling basins to reduce the hydraulic jump dimensions without jeopardizing the energy dissipation in the structure. A numerical model was developed to simulate a US Bureau of Reclamation Type II basin. The model was validated with a specifically designed physical model and then was used to simulate and test the performance of the basin after adding a second row of chute blocks. The results showed a reduction in the hydraulic jump dimensions in terms of the sequent depth ratio and the roller length, which were respectively 2.5% and 1.4% lower in the modified design. These results would allow an estimated increase of the discharge in the basin close to 10%. Furthermore, this new design had 1.2% higher efficiency. Consequently, the modifications proposed for the basin design suggest improved performance of the structure. The issue of the hydraulic jump length estimation also was discussed, and different approaches were introduced and compared. These methods follow a structured and systematic procedure and gave consistent results for the developed models.The authors acknowledge the collaboration of the Hydraulics Laboratory of the Department of Hydraulic Engineering and Environment from Universitat Politecnica de Valencia (UPV) and their technicians Juan Carlos Edo and Joaquin Oliver in the construction of the experimental device used for the numerical model setup and validation. The work was supported by the research project "La aireacion del flujo y su implementacion en prototipo para la mejora de la disipacion de energia de la lamina vertiente por resalto hidraulico en distintos tipos de presas" (BIA2017-85412-C2-1-R), funded by the Spanish Agencia Estatal de Investigacion and FEDER.Macián-Pérez, JF.; Vallés-Morán, FJ.; García-Bartual, R. (2021). Assessment of the Performance of a Modified USBR Type II Stilling Basin by a Validated CFD Model. Journal of Irrigation and Drainage Engineering. 147(11):1-12. https://doi.org/10.1061/(ASCE)IR.1943-4774.00016231121471

    Analysis of the Flow in a Typified USBR II Stilling Basin through a Numerical and Physical Modeling Approach

    Full text link
    [EN] Adaptation of stilling basins to higher discharges than those considered for their design implies deep knowledge of the flow developed in these structures. To this end, the hydraulic jump occurring in a typified United States Bureau of Reclamation Type II (USBR II) stilling basin was analyzed using a numerical and experimental modeling approach. A reduced-scale physical model to conduct an experimental campaign was built and a numerical computational fluid dynamics (CFD) model was prepared to carry out the corresponding simulations. Both models were able to successfully reproduce the case study in terms of hydraulic jump shape, velocity profiles, and pressure distributions. The analysis revealed not only similarities to the flow in classical hydraulic jumps but also the influence of the energy dissipation devices existing in the stilling basin, all in good agreement with bibliographical information, despite some slight differences. Furthermore, the void fraction distribution was analyzed, showing satisfactory performance of the physical model, although the numerical approach presented some limitations to adequately represent the flow aeration mechanisms, which are discussed herein. Overall, the presented modeling approach can be considered as a useful tool to address the analysis of free surface flows occurring in stilling basins.This research was funded by 'Generalitat Valenciana predoctoral grants (Grant number [2015/7521])', in collaboration with the European Social Funds and by the research project: 'La aireacion del flujo y su implementacion en prototipo para la mejora de la disipacion de energia de la lamina vertiente por resalto hidraulico en distintos tipos de presas' (BIA2017-85412-C2-1-R), funded by the Spanish Ministry of Economy.Macián Pérez, JF.; García-Bartual, R.; Huber, B.; Bayón, A.; Vallés-Morán, FJ. (2020). Analysis of the Flow in a Typified USBR II Stilling Basin through a Numerical and Physical Modeling Approach. Water. 12(1):1-20. https://doi.org/10.3390/w12010227S120121Bayon, A., Valero, D., García-Bartual, R., Vallés-Morán, F. ​José, & López-Jiménez, P. A. (2016). Performance assessment of OpenFOAM and FLOW-3D in the numerical modeling of a low Reynolds number hydraulic jump. Environmental Modelling & Software, 80, 322-335. doi:10.1016/j.envsoft.2016.02.018Chanson, H. (2008). Turbulent air–water flows in hydraulic structures: dynamic similarity and scale effects. Environmental Fluid Mechanics, 9(2), 125-142. doi:10.1007/s10652-008-9078-3Heller, V. (2011). Scale effects in physical hydraulic engineering models. Journal of Hydraulic Research, 49(3), 293-306. doi:10.1080/00221686.2011.578914Chanson, H. (2013). Hydraulics of aerated flows:qui pro quo? Journal of Hydraulic Research, 51(3), 223-243. doi:10.1080/00221686.2013.795917Blocken, B., & Gualtieri, C. (2012). Ten iterative steps for model development and evaluation applied to Computational Fluid Dynamics for Environmental Fluid Mechanics. Environmental Modelling & Software, 33, 1-22. doi:10.1016/j.envsoft.2012.02.001Wang, H., & Chanson, H. (2015). Experimental Study of Turbulent Fluctuations in Hydraulic Jumps. Journal of Hydraulic Engineering, 141(7), 04015010. doi:10.1061/(asce)hy.1943-7900.0001010Valero, D., Viti, N., & Gualtieri, C. (2018). Numerical Simulation of Hydraulic Jumps. Part 1: Experimental Data for Modelling Performance Assessment. Water, 11(1), 36. doi:10.3390/w11010036Viti, N., Valero, D., & Gualtieri, C. (2018). Numerical Simulation of Hydraulic Jumps. Part 2: Recent Results and Future Outlook. Water, 11(1), 28. doi:10.3390/w11010028Bayon-Barrachina, A., & Lopez-Jimenez, P. A. (2015). Numerical analysis of hydraulic jumps using OpenFOAM. Journal of Hydroinformatics, 17(4), 662-678. doi:10.2166/hydro.2015.041Teuber, K., Broecker, T., Bayón, A., Nützmann, G., & Hinkelmann, R. (2019). CFD-modelling of free surface flows in closed conduits. Progress in Computational Fluid Dynamics, An International Journal, 19(6), 368. doi:10.1504/pcfd.2019.103266Chachereau, Y., & Chanson, H. (2011). Free-surface fluctuations and turbulence in hydraulic jumps. Experimental Thermal and Fluid Science, 35(6), 896-909. doi:10.1016/j.expthermflusci.2011.01.009Zhang, G., Wang, H., & Chanson, H. (2012). Turbulence and aeration in hydraulic jumps: free-surface fluctuation and integral turbulent scale measurements. Environmental Fluid Mechanics, 13(2), 189-204. doi:10.1007/s10652-012-9254-3Mossa, M. (1999). On the oscillating characteristics of hydraulic jumps. Journal of Hydraulic Research, 37(4), 541-558. doi:10.1080/00221686.1999.9628267Chanson, H., & Brattberg, T. (2000). Experimental study of the air–water shear flow in a hydraulic jump. International Journal of Multiphase Flow, 26(4), 583-607. doi:10.1016/s0301-9322(99)00016-6Murzyn, F., Mouaze, D., & Chaplin, J. R. (2005). Optical fibre probe measurements of bubbly flow in hydraulic jumps. International Journal of Multiphase Flow, 31(1), 141-154. doi:10.1016/j.ijmultiphaseflow.2004.09.004Gualtieri, C., & Chanson, H. (2007). Experimental analysis of Froude number effect on air entrainment in the hydraulic jump. Environmental Fluid Mechanics, 7(3), 217-238. doi:10.1007/s10652-006-9016-1Chanson, H., & Gualtieri, C. (2008). Similitude and scale effects of air entrainment in hydraulic jumps. Journal of Hydraulic Research, 46(1), 35-44. doi:10.1080/00221686.2008.9521841Ho, D. K. H., & Riddette, K. M. (2010). Application of computational fluid dynamics to evaluate hydraulic performance of spillways in australia. Australian Journal of Civil Engineering, 6(1), 81-104. doi:10.1080/14488353.2010.11463946Dong, Wang, Vetsch, Boes, & Tan. (2019). Numerical Simulation of Air–Water Two-Phase Flow on Stepped Spillways Behind X-Shaped Flaring Gate Piers under Very High Unit Discharge. Water, 11(10), 1956. doi:10.3390/w11101956Toso, J. W., & Bowers, C. E. (1988). Extreme Pressures in Hydraulic‐Jump Stilling Basins. Journal of Hydraulic Engineering, 114(8), 829-843. doi:10.1061/(asce)0733-9429(1988)114:8(829)Houichi, L., Ibrahim, G., & Achour, B. (2006). Experiments for the Discharge Capacity of the Siphon Spillway Having the Creager-Ofitserov Profile. International Journal of Fluid Mechanics Research, 33(5), 395-406. doi:10.1615/interjfluidmechres.v33.i5.10Padulano, R., Fecarotta, O., Del Giudice, G., & Carravetta, A. (2017). Hydraulic Design of a USBR Type II Stilling Basin. Journal of Irrigation and Drainage Engineering, 143(5), 04017001. doi:10.1061/(asce)ir.1943-4774.0001150Hirt, C. ., & Nichols, B. . (1981). Volume of fluid (VOF) method for the dynamics of free boundaries. Journal of Computational Physics, 39(1), 201-225. doi:10.1016/0021-9991(81)90145-5Bombardelli, F. A., Meireles, I., & Matos, J. (2010). Laboratory measurements and multi-block numerical simulations of the mean flow and turbulence in the non-aerated skimming flow region of steep stepped spillways. Environmental Fluid Mechanics, 11(3), 263-288. doi:10.1007/s10652-010-9188-6Pope, S. B. (2001). Turbulent Flows. Measurement Science and Technology, 12(11), 2020-2021. doi:10.1088/0957-0233/12/11/705Harlow, F. H. (1967). Turbulence Transport Equations. Physics of Fluids, 10(11), 2323. doi:10.1063/1.1762039Launder, B. E., & Sharma, B. I. (1974). Application of the energy-dissipation model of turbulence to the calculation of flow near a spinning disc. Letters in Heat and Mass Transfer, 1(2), 131-137. doi:10.1016/0094-4548(74)90150-7Yakhot, V., Orszag, S. A., Thangam, S., Gatski, T. B., & Speziale, C. G. (1992). Development of turbulence models for shear flows by a double expansion technique. Physics of Fluids A: Fluid Dynamics, 4(7), 1510-1520. doi:10.1063/1.858424Li, S., & Zhang, J. (2018). Numerical Investigation on the Hydraulic Properties of the Skimming Flow over Pooled Stepped Spillway. Water, 10(10), 1478. doi:10.3390/w10101478Zhang, W., Wang, J., Zhou, C., Dong, Z., & Zhou, Z. (2018). Numerical Simulation of Hydraulic Characteristics in A Vortex Drop Shaft. Water, 10(10), 1393. doi:10.3390/w10101393Xiang, M., Cheung, S. C. P., Tu, J. Y., & Zhang, W. H. (2014). A multi-fluid modelling approach for the air entrainment and internal bubbly flow region in hydraulic jumps. Ocean Engineering, 91, 51-63. doi:10.1016/j.oceaneng.2014.08.016Procedure for Estimation and Reporting of Uncertainty Due to Discretization in CFD Applications. (2008). Journal of Fluids Engineering, 130(7), 078001. doi:10.1115/1.2960953Cartellier, A., & Achard, J. L. (1991). Local phase detection probes in fluid/fluid two‐phase flows. Review of Scientific Instruments, 62(2), 279-303. doi:10.1063/1.1142117Cartellier, A., & Barrau, E. (1998). Monofiber optical probes for gas detection and gas velocity measurements: conical probes. International Journal of Multiphase Flow, 24(8), 1265-1294. doi:10.1016/s0301-9322(98)00032-9Boyer, C., Duquenne, A.-M., & Wild, G. (2002). Measuring techniques in gas–liquid and gas–liquid–solid reactors. Chemical Engineering Science, 57(16), 3185-3215. doi:10.1016/s0009-2509(02)00193-8Hager, W. H., & Bremen, R. (1989). Classical hydraulic jump: sequent depths. Journal of Hydraulic Research, 27(5), 565-585. doi:10.1080/00221688909499111Hager, W. H., & Li, D. (1992). Sill-controlled energy dissipator. Journal of Hydraulic Research, 30(2), 165-181. doi:10.1080/00221689209498932Bakhmeteff, B. A., & Matzke, A. E. (1936). The Hydraulic Jump in Terms of Dynamic Similarity. Transactions of the American Society of Civil Engineers, 101(1), 630-647. doi:10.1061/taceat.0004708Hager, W. H., Bremen, R., & Kawagoshi, N. (1990). Classical hydraulic jump: length of roller. Journal of Hydraulic Research, 28(5), 591-608. doi:10.1080/00221689009499048Bennett, N. D., Croke, B. F. W., Guariso, G., Guillaume, J. H. A., Hamilton, S. H., Jakeman, A. J., … Andreassian, V. (2013). Characterising performance of environmental models. Environmental Modelling & Software, 40, 1-20. doi:10.1016/j.envsoft.2012.09.011McCorquodale, J. A., & Khalifa, A. (1983). Internal Flow in Hydraulic Jumps. Journal of Hydraulic Engineering, 109(5), 684-701. doi:10.1061/(asce)0733-9429(1983)109:5(684)Kirkgöz, M. S., & Ardiçlioğlu, M. (1997). Velocity Profiles of Developing and Developed Open Channel Flow. Journal of Hydraulic Engineering, 123(12), 1099-1105. doi:10.1061/(asce)0733-9429(1997)123:12(1099

    Characterization of Structural Properties in High Reynolds Hydraulic Jump Based on CFD and Physical Modeling Approaches

    Full text link
    [EN] A classical hydraulic jump with Froude number (Fr1=6) and Reynolds number (Re1=210,000) was characterized using the computational fluid dynamics (CFD) codes OpenFOAM and FLOW-3D, whose performance was assessed. The results were compared with experimental data from a physical model designed for this purpose. The most relevant hydraulic jump characteristics were investigated, including hydraulic jump efficiency, roller length, free surface profile, distributions of velocity and pressure, and fluctuating variables. The model outcome was also compared with previous results from the literature. Both CFD codes were found to represent with high accuracy the hydraulic jump surface profile, roller length, efficiency, and sequent depths ratio, consistently with previous research. Some significant differences were found between both CFD codes regarding velocity distributions and pressure fluctuations, although in general the results agree well with experimental and bibliographical observations. This finding makes models with these characteristics suitable for engineering applications involving the design and optimization of energy dissipation devices.The research presented herein was possible thanks to the Generalitat Valenciana predoctoral grants [Ref. (2015/7521)], in collaboration with the European Social Funds and to the research project La aireacion del flujo y su implementacion en prototipo para la mejora de la disipacion de energia de la lamina vertiente por resalto hidraulico en distintos tipos de presas (BIA2017-85412-C2-1-R), funded by the Spanish Ministry of Economy.Macián Pérez, JF.; Bayón, A.; García-Bartual, R.; López Jiménez, PA.; Vallés-Morán, FJ. (2020). Characterization of Structural Properties in High Reynolds Hydraulic Jump Based on CFD and Physical Modeling Approaches. Journal of Hydraulic Engineering. 146(12):1-13. https://doi.org/10.1061/(ASCE)HY.1943-7900.0001820S11314612Abdul Khader, M. H., & Elango, K. (1974). TURBULENT PRESSURE FIELD BENEATH A HYDRAULIC JUMP. Journal of Hydraulic Research, 12(4), 469-489. doi:10.1080/00221687409499725Bakhmeteff B. A. and A. E. Matzke. 1936. “The hydraulic jump in terms of dynamic similarity.” In Vol. 101 of Proc. American Society of Civil Engineers 630–647. Reston VA: ASCE.Bayon A. 2017. “Numerical analysis of air-water flows in hydraulic structures using computational fluid dynamics (CFD).” Ph.D. thesis Research Institute of Water and Environmental Engineering Universitat Politècnica de València.Bayon-Barrachina, A., & Lopez-Jimenez, P. A. (2015). Numerical analysis of hydraulic jumps using OpenFOAM. Journal of Hydroinformatics, 17(4), 662-678. doi:10.2166/hydro.2015.041Bayon A. J. F. Macián-Pérez F. J. Vallés-Morán and P. A. López-Jiménez. 2019. “Effect of RANS turbulence model in hydraulic jump CFD simulations.” In E-proc. 38th IAHR World Congress. Panama City Panama: Spanish Ministry of Economy.Bayon, A., Toro, J. P., Bombardelli, F. A., Matos, J., & López-Jiménez, P. A. (2018). Influence of VOF technique, turbulence model and discretization scheme on the numerical simulation of the non-aerated, skimming flow in stepped spillways. Journal of Hydro-environment Research, 19, 137-149. doi:10.1016/j.jher.2017.10.002Bayon, A., Valero, D., García-Bartual, R., Vallés-Morán, F. ​José, & López-Jiménez, P. A. (2016). Performance assessment of OpenFOAM and FLOW-3D in the numerical modeling of a low Reynolds number hydraulic jump. Environmental Modelling & Software, 80, 322-335. doi:10.1016/j.envsoft.2016.02.018Bennett, N. D., Croke, B. F. W., Guariso, G., Guillaume, J. H. A., Hamilton, S. H., Jakeman, A. J., … Andreassian, V. (2013). Characterising performance of environmental models. Environmental Modelling & Software, 40, 1-20. doi:10.1016/j.envsoft.2012.09.011Biswas, R., & Strawn, R. C. (1998). Tetrahedral and hexahedral mesh adaptation for CFD problems. Applied Numerical Mathematics, 26(1-2), 135-151. doi:10.1016/s0168-9274(97)00092-5Blocken, B., & Gualtieri, C. (2012). Ten iterative steps for model development and evaluation applied to Computational Fluid Dynamics for Environmental Fluid Mechanics. Environmental Modelling & Software, 33, 1-22. doi:10.1016/j.envsoft.2012.02.001Bombardelli, F. A., Meireles, I., & Matos, J. (2010). Laboratory measurements and multi-block numerical simulations of the mean flow and turbulence in the non-aerated skimming flow region of steep stepped spillways. Environmental Fluid Mechanics, 11(3), 263-288. doi:10.1007/s10652-010-9188-6Bradshaw, P. (1997). Understanding and prediction of turbulent flow—1996. International Journal of Heat and Fluid Flow, 18(1), 45-54. doi:10.1016/s0142-727x(96)00134-8Caishui, H. (2012). Three-dimensional Numerical Analysis of Flow Pattern in Pressure Forebay of Hydropower Station. Procedia Engineering, 28, 128-135. doi:10.1016/j.proeng.2012.01.694Castillo L. G. J. M. Carrillo J. T. García and A. Vigueras-Rodríguez. 2014. “Numerical simulations and laboratory measurements in hydraulic jumps.” In Proc. 11th Int. Conf. of Hydroinformatics. New York: Spanish Ministry of Economy.Castro-Orgaz, O., & Hager, W. H. (2009). Classical hydraulic jump: basic flow features. Journal of Hydraulic Research, 47(6), 744-754. doi:10.3826/jhr.2009.3610Procedure for Estimation and Reporting of Uncertainty Due to Discretization in CFD Applications. (2008). Journal of Fluids Engineering, 130(7), 078001. doi:10.1115/1.2960953Chachereau, Y., & Chanson, H. (2011). Free-surface fluctuations and turbulence in hydraulic jumps. Experimental Thermal and Fluid Science, 35(6), 896-909. doi:10.1016/j.expthermflusci.2011.01.009Chanson, H. (2006). Bubble entrainment, spray and splashing at hydraulic jumps. Journal of Zhejiang University-SCIENCE A, 7(8), 1396-1405. doi:10.1631/jzus.2006.a1396Chanson, H. (2009). Current knowledge in hydraulic jumps and related phenomena. A survey of experimental results. European Journal of Mechanics - B/Fluids, 28(2), 191-210. doi:10.1016/j.euromechflu.2008.06.004Chanson, H. (2013). Hydraulics of aerated flows:qui pro quo? Journal of Hydraulic Research, 51(3), 223-243. doi:10.1080/00221686.2013.795917Chanson, H., & Brattberg, T. (2000). Experimental study of the air–water shear flow in a hydraulic jump. International Journal of Multiphase Flow, 26(4), 583-607. doi:10.1016/s0301-9322(99)00016-6Chanson, H., & Gualtieri, C. (2008). Similitude and scale effects of air entrainment in hydraulic jumps. Journal of Hydraulic Research, 46(1), 35-44. doi:10.1080/00221686.2008.9521841Chanson, H., & Montes, J. S. (1995). Characteristics of Undular Hydraulic Jumps: Experimental Apparatus and Flow Patterns. Journal of Hydraulic Engineering, 121(2), 129-144. doi:10.1061/(asce)0733-9429(1995)121:2(129)Cheng, C.-K., Tai, Y.-C., & Jin, Y.-C. (2017). Particle Image Velocity Measurement and Mesh-Free Method Modeling Study of Forced Hydraulic Jumps. Journal of Hydraulic Engineering, 143(9), 04017028. doi:10.1061/(asce)hy.1943-7900.0001325Dong, Wang, Vetsch, Boes, & Tan. (2019). Numerical Simulation of Air–Water Two-Phase Flow on Stepped Spillways Behind X-Shaped Flaring Gate Piers under Very High Unit Discharge. Water, 11(10), 1956. doi:10.3390/w11101956Fuentes-Pérez, J. F., Silva, A. T., Tuhtan, J. A., García-Vega, A., Carbonell-Baeza, R., Musall, M., & Kruusmaa, M. (2018). 3D modelling of non-uniform and turbulent flow in vertical slot fishways. Environmental Modelling & Software, 99, 156-169. doi:10.1016/j.envsoft.2017.09.011Gualtieri, C., & Chanson, H. (2007). Experimental analysis of Froude number effect on air entrainment in the hydraulic jump. Environmental Fluid Mechanics, 7(3), 217-238. doi:10.1007/s10652-006-9016-1Hager, W. H. (1992). Energy Dissipators and Hydraulic Jump. Water Science and Technology Library. doi:10.1007/978-94-015-8048-9Hager, W. H., & Bremen, R. (1989). Classical hydraulic jump: sequent depths. Journal of Hydraulic Research, 27(5), 565-585. doi:10.1080/00221688909499111Hager, W. H., Bremen, R., & Kawagoshi, N. (1990). Classical hydraulic jump: length of roller. Journal of Hydraulic Research, 28(5), 591-608. doi:10.1080/00221689009499048Heller, V. (2011). Scale effects in physical hydraulic engineering models. Journal of Hydraulic Research, 49(3), 293-306. doi:10.1080/00221686.2011.578914Hirt, C. ., & Nichols, B. . (1981). Volume of fluid (VOF) method for the dynamics of free boundaries. Journal of Computational Physics, 39(1), 201-225. doi:10.1016/0021-9991(81)90145-5Ho, D. K. H., & Riddette, K. M. (2010). Application of computational fluid dynamics to evaluate hydraulic performance of spillways in australia. Australian Journal of Civil Engineering, 6(1), 81-104. doi:10.1080/14488353.2010.11463946Jesudhas, V., Balachandar, R., Roussinova, V., & Barron, R. (2018). Turbulence Characteristics of Classical Hydraulic Jump Using DES. Journal of Hydraulic Engineering, 144(6), 04018022. doi:10.1061/(asce)hy.1943-7900.0001427Jesudhas, V., Roussinova, V., Balachandar, R., & Barron, R. (2017). Submerged Hydraulic Jump Study Using DES. Journal of Hydraulic Engineering, 143(3), 04016091. doi:10.1061/(asce)hy.1943-7900.0001231KIM, J. (2004). A numerical study of the effects of ambient wind direction on flow and dispersion in urban street canyons using the RNG k?? turbulence model. Atmospheric Environment, 38(19), 3039-3048. doi:10.1016/j.atmosenv.2004.02.047Kim, S.-E., & Boysan, F. (1999). Application of CFD to environmental flows. Journal of Wind Engineering and Industrial Aerodynamics, 81(1-3), 145-158. doi:10.1016/s0167-6105(99)00013-6Kirkgöz, M. S., & Ardiçlioğlu, M. (1997). Velocity Profiles of Developing and Developed Open Channel Flow. Journal of Hydraulic Engineering, 123(12), 1099-1105. doi:10.1061/(asce)0733-9429(1997)123:12(1099)Langhi, M., & Hosoda, T. (2018). Three-dimensional unsteady RANS model for hydraulic jumps. ISH Journal of Hydraulic Engineering, 1-8. doi:10.1080/09715010.2018.1555775Liu, M., Rajaratnam, N., & Zhu, D. Z. (2004). Turbulence Structure of Hydraulic Jumps of Low Froude Numbers. Journal of Hydraulic Engineering, 130(6), 511-520. doi:10.1061/(asce)0733-9429(2004)130:6(511)Liu, T., Song, L., Fu, W., Wang, G., Lin, Q., Zhao, D., & Yi, B. (2018). Experimental Study on Single-Hole Injection of Kerosene into Pressurized Quiescent Environments. Journal of Energy Engineering, 144(3), 04018014. doi:10.1061/(asce)ey.1943-7897.0000536Ma, J., Oberai, A. A., Lahey, R. T., & Drew, D. A. (2011). Modeling air entrainment and transport in a hydraulic jump using two-fluid RANS and DES turbulence models. Heat and Mass Transfer, 47(8), 911-919. doi:10.1007/s00231-011-0867-8McCorquodale, J. A., & Khalifa, A. (1983). Internal Flow in Hydraulic Jumps. Journal of Hydraulic Engineering, 109(5), 684-701. doi:10.1061/(asce)0733-9429(1983)109:5(684)McDonald P. W. 1971. “The computation of transonic flow through two-dimensional gas turbine cascades.” In Proc. ASME 1971 Int. Gas Turbine Conf. and Products Show. Houston: International Gas Turbine Institute.Mossa, M. (1999). On the oscillating characteristics of hydraulic jumps. Journal of Hydraulic Research, 37(4), 541-558. doi:10.1080/00221686.1999.9628267Padulano, R., Fecarotta, O., Del Giudice, G., & Carravetta, A. (2017). Hydraulic Design of a USBR Type II Stilling Basin. Journal of Irrigation and Drainage Engineering, 143(5), 04017001. doi:10.1061/(asce)ir.1943-4774.0001150Resch, F. J., & Leutheusser, H. J. (1972). Le ressaut hydraulique : mesures de turbulence dans la région diphasique. La Houille Blanche, 58(4), 279-293. doi:10.1051/lhb/1972021Sarfaraz M. and J. Attari. 2011. “Numerical simulation of uniform flow region over a steeply sloping stepped spillway.” In Proc. 6th National Congress on Civil Engineering. Semnan Iran: Iran Water and Power Development Company.Spalart, P. . (2000). Strategies for turbulence modelling and simulations. International Journal of Heat and Fluid Flow, 21(3), 252-263. doi:10.1016/s0142-727x(00)00007-2Speziale, C. G., & Thangam, S. (1992). Analysis of an RNG based turbulence model for separated flows. International Journal of Engineering Science, 30(10), 1379-IN4. doi:10.1016/0020-7225(92)90148-aSpoljaric A. 1984. “Dynamic characteristics of the load on the bottom plate under hydraulic jump.” In Proc. Int. Conf. Hydrosoft’84: Hydraulic Engineering Software. New York: Elsevier.Teuber, K., Broecker, T., Bayón, A., Nützmann, G., & Hinkelmann, R. (2019). CFD-modelling of free surface flows in closed conduits. Progress in Computational Fluid Dynamics, An International Journal, 19(6), 368. doi:10.1504/pcfd.2019.103266Toso, J. W., & Bowers, C. E. (1988). Extreme Pressures in Hydraulic‐Jump Stilling Basins. Journal of Hydraulic Engineering, 114(8), 829-843. doi:10.1061/(asce)0733-9429(1988)114:8(829)Valero D. and D. B. Bung. 2015. “Hybrid investigations of air transport processes in moderately sloped stepped spillway flows.” In Vol. 28 of E-proc. 36th IAHR World Congress 1–10. The Hague Netherlands: IHE Delft.Valero, D., & Bung, D. B. (2016). Sensitivity of turbulent Schmidt number and turbulence model to simulations of jets in crossflow. Environmental Modelling & Software, 82, 218-228. doi:10.1016/j.envsoft.2016.04.030Valero, D., Viti, N., & Gualtieri, C. (2018). Numerical Simulation of Hydraulic Jumps. Part 1: Experimental Data for Modelling Performance Assessment. Water, 11(1), 36. doi:10.3390/w11010036Viti, N., Valero, D., & Gualtieri, C. (2018). Numerical Simulation of Hydraulic Jumps. Part 2: Recent Results and Future Outlook. Water, 11(1), 28. doi:10.3390/w11010028von Kármán T. 1930. “Mechanische Ähnlichkeit und Turbulenz.” In Proc. 3rd Int. Congress on Applied Mechanics. New York: Springer.Wang H. 2014. “Turbulence and air entrainment in hydraulic jumps.” Ph.D. thesis Dept. of Civil Engineering Univ. of Queensland.Wang, H., & Chanson, H. (2013). Air entrainment and turbulent fluctuations in hydraulic jumps. Urban Water Journal, 12(6), 502-518. doi:10.1080/1573062x.2013.847464Wang, H., & Chanson, H. (2015). Experimental Study of Turbulent Fluctuations in Hydraulic Jumps. Journal of Hydraulic Engineering, 141(7), 04015010. doi:10.1061/(asce)hy.1943-7900.0001010Weller, H. G., Tabor, G., Jasak, H., & Fureby, C. (1998). A tensorial approach to computational continuum mechanics using object-oriented techniques. Computers in Physics, 12(6), 620. doi:10.1063/1.168744Witt, A., Gulliver, J., & Shen, L. (2015). Simulating air entrainment and vortex dynamics in a hydraulic jump. International Journal of Multiphase Flow, 72, 165-180. doi:10.1016/j.ijmultiphaseflow.2015.02.012Wu, J., Zhou, Y., & Ma, F. (2018). Air entrainment of hydraulic jump aeration basin. Journal of Hydrodynamics, 30(5), 962-965. doi:10.1007/s42241-018-0088-4Xiang, M., Cheung, S. C. P., Tu, J. Y., & Zhang, W. H. (2014). A multi-fluid modelling approach for the air entrainment and internal bubbly flow region in hydraulic jumps. Ocean Engineering, 91, 51-63. doi:10.1016/j.oceaneng.2014.08.016Yakhot, V., Orszag, S. A., Thangam, S., Gatski, T. B., & Speziale, C. G. (1992). Development of turbulence models for shear flows by a double expansion technique. Physics of Fluids A: Fluid Dynamics, 4(7), 1510-1520. doi:10.1063/1.858424Zhang, G., Wang, H., & Chanson, H. (2012). Turbulence and aeration in hydraulic jumps: free-surface fluctuation and integral turbulent scale measurements. Environmental Fluid Mechanics, 13(2), 189-204. doi:10.1007/s10652-012-9254-

    Cytotoxic effects of curcumin in osteosarcoma cells

    Get PDF
    Carta al editor de International Journal of Nanomedicine, en la que los autores puntualizan ciertos resultados de investigaciones de R. Chang et al.; y de D. K. Walters et al. en relación a sus aplicaciones para la curación de algunos cánceres y enfermedades óseas metabólicas.Letter to the editor of International Journal of Nanomedicine, in which the authors point out certain results of research by R. Chang et al.; and DK Walters et al. in relation to their applications for the cure of some cancers and metabolic bone diseases

    Emulación del sistema músculo-esqueletal y el control de movimiento en una plataforma experimental

    Get PDF
    Muchos fisiólogos han observado que el músculo humano o animal es una especie de tejido elástico (como un muelle) con componentes contráctiles, los cuales dan una longitud de umbral modificable neuralmente para el desarrollo de fuerzas. La determinación de las fuerzas del músculo durante el movimiento no es solamente esencial para el análisis de las cargas internas que actúan en los huesos y articulaciones, si no que también contribuyen ha entender más profundamente los controladores neuronales. Los sistemas de control biológicos han sido estudiados como una posible inspiración para la construción de controladores de sistemas robóticos. En este trabajo, se diseño e implemento un sistema biomecánico que tiene propiedades mécanicas casi similares a las de un brazo humano o animal. En este sistema se implementaron modelos matemáticos del músculo biológico, para la generación de fuerzas en el músculo esqueletal total. Además, se desarrollo una red cortical para el control de movimientos voluntarios con restricciones neurofisiológicas y psicofísicas motoras. El controlador neuronal es propuesto para realizar el seguimiento de trajectorias deseadas en la articulación de un simple eslabón controlado por un par de actuadores agonista-antagonista con propiedades musculares. El sistema es capaz de ejecutar movimientos de alcance voluntarios, con perfiles de velocidad en forma de campana bajo perturbaciones. Los resultados experimentales muestran que el sistema presenta las propiedades básicas del músculoesqueletal las cuales son las relaciones fuerza-longitud y fuerza-velocidad. El controlador neuronal permite controlar los movimientos deseados y compesar las fuerzas externas.Se agradece el apoyo recibido por los miembros del grupo de investigación de Neurotecnología, Control y Robótica (NEUROCOR) del departamento de Ingeniería de Sistemas y Automática de la Universidad Politécnica de Cartagena. Este trabajo fue financiado en parte por la CICYTTIC99- 0446-C02-01, y por el proyecto SYNERAGH - BRE2-CT980797 BRITE EURAM- de Investigación Básica

    Lack of association of vitamin D receptor BsmI gene polymorphism with bone mineral density in Spanish postmenopausal women

    Get PDF
    La osteoporosis es un trastorno poligénico que está determinada por los efectos de varios genes, cada uno con efectos relativamente modestos en la masa ósea. El objetivo de este estudio es determinar si el receptor de la vitamina D, único nucleótido polimorfismo BsmI, está asociado con la densidad mineral ósea (DMO) de mujeres posmenopáusicas españolas. Un total de 210 mujeres posmenopáusicas sanas, mayores de 60 ± 8 años, fueron genotipificadas utilizando ensayos de genotipado SNP TaqMan® lumbar y la DMO femoral; y se determinó por la absorciometría de rayos X de energía dual (DEXA) la cantidad diaria de calcio y vitamina D. No se encontraron diferencias en el cuello femoral, trocánter, triángulo de salas, L2, L3, L4, L2-L4, o entre el cuello femoral y la DMO de cadera total tras el ajuste para posibles factores de confusión (P > 0,05) (edad, IMC, años después de la menopausia y la ingesta diaria de calcio). La BsmI polimorfismo en el gen VDR no se asoció con la DMO en mujeres posmenopáusicas españolas.Osteoporosis is a polygenic disorder that is determined by the effects of several genes, each with relatively modest effects on bone mass. The aim of this study was to determine whether the vitamin D receptor single nucleotide polymorphism BsmI is associated with bone mineral density (BMD) in Spanish postmenopausal women. A total of 210 unrelated healthy postmenopausal women aged 60 ± 8 years were genotyped using TaqManR SNP Genotyping Assays. Lumbar and femoral BMD were determined by dual-energy X-ray absorptiometry (DEXA). Daily calcium and vitamin D intake were determined by a food questionnaire. No differences were found in the femoral neck, trochanter, Ward’s Triangle, L2, L3, L4, L2-L4, or between the femoral neck and total hip BMD after further adjustment for potential confounding factors (P > 0.05) (age, BMI, years since menopause and daily calcium intake). The BsmI polymorphism in the VDR gene was not associated with BMD in Spanish postmenopausal women.peerReviewe

    Experimental Characterization of the Hydraulic Jump Profile and Velocity Distribution in a Stilling Basin Physical Model

    Full text link
    [EN] The study of the hydraulic jump developed in stilling basins is complex to a high degree due to the intense velocity and pressure fluctuations and the significant air entrainment. It is this complexity, bound to the practical interest in stilling basins for energy dissipation purposes, which brings the importance of physical modeling into the spotlight. However, despite the importance of stilling basins in engineering, bibliographic studies have traditionally focused on the classical hydraulic jump. Therefore, the objective of this research was to study the characteristics of the hydraulic jump in a typified USBR II stilling basin, through a physical model. The free surface profile and the velocity distribution of the hydraulic jump developed within this structure were analyzed in the model. To this end, an experimental campaign was carried out, assessing the performance of both, innovative techniques such as the time-of-flight camera and traditional instrumentation like the Pitot tube. The results showed a satisfactory representation of the free surface profile and the velocity distribution, despite some discussed limitations. Furthermore, the instrumentation employed revealed the important influence of the energy dissipation devices on the flow properties. In particular, relevant di erences were found for the hydraulic jump shape and the maximum velocity positions within the measured vertical profiles, when compared to classical hydraulic jumps.This research was funded by 'Generalitat Valenciana predoctoral grants (Grant number [2015/7521])', in collaboration with the European Social Funds and by the research project: 'La aireacion del flujo y su implementacion en prototipo para la mejora de la disipacion de energia de la lamina vertiente por resalto hidraulico en distintos tipos de presas' (BIA2017-85412-C2-1-R), funded by the Spanish Ministry of Economy.Macián Pérez, JF.; Vallés-Morán, FJ.; Sánchez Gómez, S.; De-Rossi-Estrada, M.; García-Bartual, R. (2020). Experimental Characterization of the Hydraulic Jump Profile and Velocity Distribution in a Stilling Basin Physical Model. Water. 12(6):1-20. https://doi.org/10.3390/w12061758S120126Valero, D., Viti, N., & Gualtieri, C. (2018). Numerical Simulation of Hydraulic Jumps. Part 1: Experimental Data for Modelling Performance Assessment. Water, 11(1), 36. doi:10.3390/w11010036Bayon, A., Valero, D., García-Bartual, R., Vallés-Morán, F. ​José, & López-Jiménez, P. A. (2016). Performance assessment of OpenFOAM and FLOW-3D in the numerical modeling of a low Reynolds number hydraulic jump. Environmental Modelling & Software, 80, 322-335. doi:10.1016/j.envsoft.2016.02.018Wang, H., & Chanson, H. (2015). Experimental Study of Turbulent Fluctuations in Hydraulic Jumps. Journal of Hydraulic Engineering, 141(7), 04015010. doi:10.1061/(asce)hy.1943-7900.0001010Padulano, R., Fecarotta, O., Del Giudice, G., & Carravetta, A. (2017). Hydraulic Design of a USBR Type II Stilling Basin. Journal of Irrigation and Drainage Engineering, 143(5), 04017001. doi:10.1061/(asce)ir.1943-4774.0001150Macián-Pérez, J. F., García-Bartual, R., Huber, B., Bayon, A., & Vallés-Morán, F. J. (2020). Analysis of the Flow in a Typified USBR II Stilling Basin through a Numerical and Physical Modeling Approach. Water, 12(1), 227. doi:10.3390/w12010227Montes, J. S., & Chanson, H. (1998). Characteristics of Undular Hydraulic Jumps: Experiments and Analysis. Journal of Hydraulic Engineering, 124(2), 192-205. doi:10.1061/(asce)0733-9429(1998)124:2(192)Ohtsu, I., Yasuda, Y., & Gotoh, H. (2001). Hydraulic condition for undular-jump formations. Journal of Hydraulic Research, 39(2), 203-209. doi:10.1080/00221680109499821Ohtsu, I., Yasuda, Y., & Gotoh, H. (2003). Flow Conditions of Undular Hydraulic Jumps in Horizontal Rectangular Channels. Journal of Hydraulic Engineering, 129(12), 948-955. doi:10.1061/(asce)0733-9429(2003)129:12(948)Bakhmeteff, B. A., & Matzke, A. E. (1936). The Hydraulic Jump in Terms of Dynamic Similarity. Transactions of the American Society of Civil Engineers, 101(1), 630-647. doi:10.1061/taceat.0004708Chachereau, Y., & Chanson, H. (2011). Free-surface fluctuations and turbulence in hydraulic jumps. Experimental Thermal and Fluid Science, 35(6), 896-909. doi:10.1016/j.expthermflusci.2011.01.009Zhang, G., Wang, H., & Chanson, H. (2012). Turbulence and aeration in hydraulic jumps: free-surface fluctuation and integral turbulent scale measurements. Environmental Fluid Mechanics, 13(2), 189-204. doi:10.1007/s10652-012-9254-3Montano, L., Li, R., & Felder, S. (2018). Continuous measurements of time-varying free-surface profiles in aerated hydraulic jumps with a LIDAR. Experimental Thermal and Fluid Science, 93, 379-397. doi:10.1016/j.expthermflusci.2018.01.016Montano, L., & Felder, S. (2020). LIDAR Observations of Free-Surface Time and Length Scales in Hydraulic Jumps. Journal of Hydraulic Engineering, 146(4), 04020007. doi:10.1061/(asce)hy.1943-7900.0001706Rajaratnam, N. (1965). The Hydraulic Jump as a Well Jet. Journal of the Hydraulics Division, 91(5), 107-132. doi:10.1061/jyceaj.0001299McCorquodale, J. A., & Khalifa, A. (1983). Internal Flow in Hydraulic Jumps. Journal of Hydraulic Engineering, 109(5), 684-701. doi:10.1061/(asce)0733-9429(1983)109:5(684)Viti, N., Valero, D., & Gualtieri, C. (2018). Numerical Simulation of Hydraulic Jumps. Part 2: Recent Results and Future Outlook. Water, 11(1), 28. doi:10.3390/w11010028Blocken, B., & Gualtieri, C. (2012). Ten iterative steps for model development and evaluation applied to Computational Fluid Dynamics for Environmental Fluid Mechanics. Environmental Modelling & Software, 33, 1-22. doi:10.1016/j.envsoft.2012.02.001Carrillo, J. M., Castillo, L. G., Marco, F., & García, J. T. (2020). Experimental and Numerical Analysis of Two-Phase Flows in Plunge Pools. Journal of Hydraulic Engineering, 146(6), 04020044. doi:10.1061/(asce)hy.1943-7900.0001763Heller, V. (2011). Scale effects in physical hydraulic engineering models. Journal of Hydraulic Research, 49(3), 293-306. doi:10.1080/00221686.2011.578914Chanson, H. (2006). Bubble entrainment, spray and splashing at hydraulic jumps. Journal of Zhejiang University-SCIENCE A, 7(8), 1396-1405. doi:10.1631/jzus.2006.a1396Hager, W. H., & Bremen, R. (1989). Classical hydraulic jump: sequent depths. Journal of Hydraulic Research, 27(5), 565-585. doi:10.1080/00221688909499111Meftah, M. B., De Serio, F., Mossa, M., & Pollio, A. (2008). Experimental study of recirculating flows generated by lateral shock waves in very large channels. Environmental Fluid Mechanics, 8(3), 215-238. doi:10.1007/s10652-008-9057-8Ben Meftah, M., Mossa, M., & Pollio, A. (2010). Considerations on shock wave/boundary layer interaction in undular hydraulic jumps in horizontal channels with a very high aspect ratio. European Journal of Mechanics - B/Fluids, 29(6), 415-429. doi:10.1016/j.euromechflu.2010.07.002Hager, W. H., Bremen, R., & Kawagoshi, N. (1990). Classical hydraulic jump: length of roller. Journal of Hydraulic Research, 28(5), 591-608. doi:10.1080/00221689009499048Kirkgöz, M. S., & Ardiçlioğlu, M. (1997). Velocity Profiles of Developing and Developed Open Channel Flow. Journal of Hydraulic Engineering, 123(12), 1099-1105. doi:10.1061/(asce)0733-9429(1997)123:12(1099

    Miocarditis aguda como manifestación de granulomatosis eosinofílica

    Get PDF
    We present the case of a young male traveller in Southeast Asia who consulted for chest pain, and was initially managed as an acute coronary syndrome. Once coronary artery disease was ruled out and hypereosinophilia was observed, we carried out a broad differential diagnosis of its possible causes. Complementary tests confirmed eosinophilic myocarditis with ventricular dysfunction. Further clinical history and tests led to a diagnosis of eosinophilic granulomatosis with polyangiitis. Following the introduction of drugs for heart failure, as well as corticosteroids and mepolizumab, the patient improved clinically, and the ejection fraction was completely recovered.Se presenta el caso de un varón joven, viajero por el sudeste asiático, que consulta por dolor torácico y es tratado inicialmente como síndrome coronario agudo. Se descarta enfermedad coronaria y se objetiva hipereosinofilia, por lo que comienza un amplio diagnóstico diferencial de sus posibles causas. Las pruebas complementarias confirman una miocarditis eosinofílica con disfunción ventricular. Profundizando en la historia clínica y ampliando las pruebas, se alcanza el diagnóstico de granulomatosis eosinofílica con poliangeítis. Tras la instauración de fármacos para insuficiencia cardíaca, así como corticoides y mepolizumab, el paciente mejora clínicamente y la fracción de eyección se restablece completamente

    Evidence of increasing drought severity caused by temperature rise in southern Europe

    Get PDF
    We use high quality climate data from ground meteorological stations in the Iberian Peninsula (IP) and robust drought indices to confirm that drought severity has increased in the past five decades, as a consequence of greater atmospheric evaporative demand resulting from temperature rise. Increased drought severity is independent of the model used to quantify the reference evapotranspiration. We have also focused on drought impacts to droughtsensitive systems, such as river discharge, by analyzing streamflow data for 287 rivers in the IP, and found that hydrological drought frequency and severity have also increased in the past five decades in natural, regulated and highly regulated basins. Recent positive trend in the atmospheric water demand has had a direct influence on the temporal evolution of streamflows, clearly identified during the warm season, in which higher evapotranspiration rates are recorded. This pattern of increase in evaporative demand and greater drought severity is probably applicable to other semiarid regions of the world, including other Mediterranean areas, the Sahel, southern Australia and South Africa, and can be expected to increasingly compromise water supplies and cause political, social and economic tensions among regions in the near future.This work has been supported by research projects CGL201127574CO202, CGL201127536 and CGL2011–24185 financed by the Spanish Commission of Science and Technology and FEDER, ‘Demonstration and validation of innovative methodology for regional climate change adaptation in the Mediterranean area (LIFE MEDACC)’ financed by the LIFE programme of the European Commission, CTTP1/12, financed by the Comunidad de Trabajo de los Pirineos, and QSECA (PTDC/AAGGLO/ 4155/2012) funded by the Portuguese Foundation for Science and Technology (FCT). ASL was supported by a postdoctoral fellowship from the Catalan Government (2011 BPB 00078) and CAM was supported by a Juan de la Cierva fellowship by the Spanish Government

    Osimertinib in advanced EGFR-T790M mutation-positive non-small cell lung cancer patients treated within the Special Use Medication Program in Spain : OSIREX-Spanish Lung Cancer Group

    Get PDF
    AURA study reported 61% objective response rate and progression-free survival of 9.6 months with osimertinib in patients with EGFR/T790M+ non-small cell lung cancer. Due to lack of real-world data, we proposed this study to describe the experience with osimertinib in Spain. Post-authorization, non-interventional Special Use Medication Program, multicenter, retrospective study in advanced EGFR/T790M+ non-small cell lung cancer. One hundred-fifty five patients were enrolled (August 2016-December 2018) from 30 sites. Primary objective: progression-free survival. Secondary objectives: toxicity profile, objective response rate, and use of health service resources. 70% women, median age 66. 63.9% were non-smokers and 99% had adenocarcinoma. Most patients had received at least one prior treatment (97%), 91.7% had received previous EGFR-tyrosine kinase inhibitors and 2.8% osimertinib as first-line treatment. At data cutoff, median follow-up was 11.8 months. One hundred-fifty five patients were evaluable for response, 1.3% complete response, 40.6% partial response, 31% stable disease and 11.6% disease progression. Objective response rate was 42%. Median progression-free survival was 9.4 months. Of the 155 patients who received treatment, 76 (49%) did not reported any adverse event, 51% presented some adverse event, most of which were grade 1 or 2. The resource cost study indicates early use is warranted. This study to assess the real-world clinical impact of osimertinib showed high drug activity in pretreated advanced EGFR/T790M+ non-small cell lung cancer, with manageable adverse events. Clinical trial registration number : NCT03790397
    corecore