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Abstract
We use high quality climate data from ground meteorological stations in the Iberian
Peninsula (IP) and robust drought indices to confirm that drought severity has increased in the
past five decades, as a consequence of greater atmospheric evaporative demand resulting from
temperature rise. Increased drought severity is independent of the model used to quantify the
reference evapotranspiration. We have also focused on drought impacts to drought-sensitive
systems, such as river discharge, by analyzing streamflow data for 287 rivers in the IP, and found
that hydrological drought frequency and severity have also increased in the past five decades
in natural, regulated and highly regulated basins. Recent positive trend in the atmospheric
water demand has had a direct influence on the temporal evolution of streamflows, clearly
identified during the warm season, in which higher evapotranspiration rates are recorded. This
pattern of increase in evaporative demand and greater drought severity is probably applicable
to other semiarid regions of the world, including other Mediterranean areas, the Sahel,
southern Australia and South Africa, and can be expected to increasingly compromise water
supplies and cause political, social and economic tensions among regions in the near future.

Keywords: evapotranspiration, streamflow, climatic change, water resources

S Online supplementary data available from stacks.iop.org/ERL/9/044001/mmedia

1. Introduction

The consequences of recent global temperature rise for drought
severity are not well understood. An increase in the water

Content from this work may be used under the terms of
the Creative Commons Attribution 3.0 licence. Any further

distribution of this work must maintain attribution to the author(s) and the
title of the work, journal citation and DOI.

pressure deficit driven by higher temperatures is expected to
increase atmospheric evaporative demand (Wang et al 2012),
resulting in more frequent and severe droughts (Dai 2011).
However, problems in drought quantification (Redmond 2002)
and data uncertainty (Trenberth et al 2014) make it difficult
to determine changes in drought severity and to correlate
these with climate drivers. This has promoted intense scien-
tific debate (Sheffield et al 2012, Dai 2013, van der Schrier
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et al 2013), and resulted in low confidence in drought trends
worldwide (Seneviratne et al 2012). The hypothesis that there
will be an increase in the severity of climate-driven droughts as
a consequence of temperature-enhanced atmospheric evapora-
tive demand appears reasonable (Breshears et al 2005, Teuling
et al 2013). The expected consequences include enhanced bio-
logical stress (Williams et al 2013, Peng et al 2011, Carnicer
et al 2011) and reduced soil water content, runoff generation,
stream flow and groundwater recharge (Cai and Cowan 2008,
Cho et al 2011). Nevertheless, the relationship between cli-
mate warming and increased evapotranspiration is the subject
of large scientific debate. Several studies have shown no
effect of temperature increase on drought through increased
evaporation, as other meteorological variables that affect the
evaporative demand of the atmosphere may compensate for
the temperature increase (McVicar et al 2012, Roderick et al
2008), and potential evaporation may in fact have decreased
in recent decades (Roderick et al 2008).

Recent studies analyzing the impact of temperature rise
on drought severity worldwide have reported variable, if not
contradictory, results (Sheffield et al 2012, Dai 2013). These
studies have been based on drought indices obtained from
low resolution gridded climate data. However, climate data for
some variables including precipitation, wind speed, incoming
solar radiation and relative humidity are subject to substantial
uncertainty at the global scale, because of the scarcity of
high quality long-term ground measuring stations and other
problems. Uncertainties in global drought severity estimates
due to different methods of estimating the evaporative demand
of the atmosphere and hence the evolution of drought severity
must also be taken into account when assessing drought trends
(Sheffield et al 2012). Such uncertainties prevent definitive
conclusions to be made, as noted in a recent IPCC report
(Seneviratne et al 2012). Consequently, there is a pressing
need to undertake studies on the effect of temperature rise on
drought severity, to reduce data uncertainties, and to expand
monitoring of drought impacts to assess possible increases in
drought severity. This is especially so in regions characterized
by structural water deficits, as these may be most affected by
changes in drought frequency and severity. A case in point is
the Iberian Peninsula (IP), which is characterized by scarce and
highly variable precipitation and recurrent drought episodes,
and where drought impacts might be compounding because of
years of unprecedented low precipitation (Hoerling et al 2012).
The availability of an effective and dense network of ground
meteorological stations measuring a wide range of climatic and
hydrologic variables makes the IP highly suitable for testing
whether temperature rise is increasing drought severity.

2. Methods

We used complete record sets for the period 1 January 1961
to 31 December 2011, from first-order meteorological stations
across the IP; these stations are maintained by professional
weather observers of the Spanish and Portuguese meteoro-
logical agencies (www.aemet.es; www.ipma.pt/). Following
processing of the available information we chose 54 meteoro-
logical stations (see supplementary table 1 and supplementary
figure 1 available at stacks.iop.org/ERL/9/044001/mmedia)
covering the entire IP. For these stations we were able to obtain

complete, homogenized and quality controlled series of the
variables precipitation, maximum and minimum temperature,
relative humidity, surface pressure, wind speed and sunlight
hours. Details of the processing and homogenization of the
data series for Spain have been published previously (Vicente-
Serrano et al 2014a, Azorin-Molina et al 2014, Sanchez-
Lorenzo et al 2007, González-Hidalgo et al 2011). The series
for Portugal were analyzed specifically for this study, and
were quality controlled and homogenized following the same
approach. The reference evapotranspiration (ET0) was cal-
culated according to the Food and Agricultural Organization
(FAO) Penman–Monteith equation (Allen et al 1998). ET0 was
also calculated using methods that require a fewer number of
variables (see supplementary material available at stacks.iop.
org/ERL/9/044001/mmedia). Quality controlled and homog-
enized series of evaporation in Spain were also used, based
on pan (since 1984) and Piché (since 1966) evaporimeters
(Sanchez-Lorenzo et al 2014). Monthly streamflow data from
1460 gauging stations were obtained from water agencies in
Spain (Centro de Estudios Hidrográficos, Agència Catalana de
l’Aigua, Agencia Andaluza del Agua and Augas de Galicia)
and Portugal (Sistema Nacional de Informaçâo de Recursos
Hı́dricos). A total of 287 stations having few data gaps from
1961 to 2009 were selected (supplementary figure 2 avail-
able at stacks.iop.org/ERL/9/044001/mmedia), and stream-
flow data were quality controlled for possible inhomogeneities
not caused by human regulation (Lorenzo-Lacruz et al 2012).

To quantify droughts we used the standardized precip-
itation index (SPI) (McKee et al 1993), which is based on
long-term precipitation data, and the standardized precipitation
evapotranspiration index (SPEI) (Vicente-Serrano et al 2010),
which is based on the difference between precipitation and ref-
erence evapotranspiration (ET0; see supplementary materials
available at stacks.iop.org/ERL/9/044001/mmedia). The 12-
month SPI and SPEI were calculated for each meteorological
station. A regional series for the entire IP was obtained by
means of a weighting average, using as a weight the surface
represented by each station by means of the Thiessen polygons
method. The weights were used to determine the surface area
affected by drought in each month (<10% of probability; SPI
and SPEI <− 1.28). The magnitude of change in the drought
indices was assessed using the slope of the regressions of the
SPEI and the SPI series with time.

The monthly precipitation and ET0 series were interpo-
lated to a 5 km× 5 km grid using an inverse distance-weighting
algorithm. Using a digital elevation model for the entire IP
we computed the drainage basin for each streamflow station
using the archydro tool in ArcGis c© software. The basins
were classified as natural, regulated and highly regulated
(supplementary figure 3 available at stacks.iop.org/ERL/9/
044001/mmedia), based on the impoundment ratio for each
station (Lorenzo-Lacruz et al 2012) (the ratio of the cumu-
lative reservoir capacity upstream of the gauge to the mean
annual runoff measured by the gauge). Series of monthly total
precipitation and ET0 for each basin were obtained from the
5 km× 5 km grids. The statistical significance of the trends in
annual precipitation, streamflow and ET0 were assessed using
the Kendall tau rank correlation coefficient. Relationships
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Figure 1. (A) Evolution of the regional standardized precipitation index (SPI) (blue columns) and the standardized precipitation
evapotranspiration index (SPEI) (black line) for the Iberian Peninsula from 1961 to 2011. The SPEI was obtained using the
Penman–Monteith equation, and used to calculate ET0. (B) Percentage of surface area affected by drought from 1961 to 2011, based on the
SPI (blue) and the SPEI (red). The surface area affected was selected based on a SPI/SPEI threshold of −1.28, which corresponds to 10% of
the events according to the probability distribution function. (C) Difference between the SPEI and the SPI with respect to the surface area
affected by drought. A linear fit is included.

among the time series were assessed using the Pearson’s r
correlation coefficient.

A streamflow drought index (the standardized streamflow
index, SSI) (Vicente-Serrano et al 2012a) comparable in time
and space, and across very different river regimes, was calcu-
lated for each gauging station for the period 1961–2009, and
correlated monthly (Pearson’s r ) with the series of the SPEI
and the SPI corresponding to each basin. The SPEI and the SPI
were determined for various time scales (1–24 months; sup-
plementary figure 4 available at stacks.iop.org/ERL/9/044001/
mmedia), and were included in the analysis to take account of
the time lags between climate and the hydrological variables.

3. Results

There is substantial agreement between the SPI and the SPEI
time series for the entire IP (figure 1(A)). Major drought
episodes in the IP were recorded in 1981, 1995, 2000 and
2005, and both indices indicated increased drought severity

(i.e. trends towards more negative values) between 1961 and
2011, and the surface area affected by drought increased over
the same time period (figure 1(B)). Nevertheless, in the last
two decades the SPEI has indicated the occurrence of more
intense drought events relative to the SPI (figure 1(C)). This
pattern is independent of the ET0 method used to calculate
the SPEI (supplementary material; figures 5–10 available at
stacks.iop.org/ERL/9/044001/mmedia).

Spatially, the evolution of the SPI across the IP predomi-
nantly decreased (more drought), although the data from eight
stations show a different trend (figure 2(A)). Nevertheless, the
SPEI showed a greater decrease than the SPI across the entire
IP, except for Lisbon (figure 2(B)). Trends in monthly differ-
ences between the two indices (SPEI–SPI) showed a dominant
negative trend (mainly in the inner IP but also in the southeast;
figure 2(C)), which is consistent with the SPEI calculated
using other ET0 approaches (supplementary figures 11–16
available at stacks.iop.org/ERL/9/044001/mmedia). Thus,
drought severity increased over the IP according to both
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Figure 2. (A) Changes in the SPI (z-units per decade) at each of the 54 stations for the period 1961–2011. (B) As in figure 2(A), but for the
SPEI. (C) Changes in the monthly difference between the SPEI and the SPI (z-units per decade) at each of the 54 stations for the period
1961–2011. The changes were estimated using least squares regression, with the series of time as the independent variable.

indices, but the increase was greater based on the SPEI, which
includes the effect of ET0. The main factor determining the
ET0 increase in the IP is a pronounced decrease in relative
humidity, driven by a decreased supply of moisture, and
increased atmospheric water holding capacity because of
higher temperatures throughout the year, but mainly in summer
(Vicente-Serrano et al 2014a). The effect of these two variables
combined has not been counteracted by a slight decrease
in wind speed and stable radiative forcing (Vicente-Serrano
et al 2014b) (supplementary figures 17–20; table 2 available
at stacks.iop.org/ERL/9/044001/mmedia). Differences in the
magnitude of change in the SPEI obtained by means of differ-
ent ET0 cluster around 0 at the majority of the meteorological
stations; even the Penman–Monteith ET0-based SPEI shows
a greater decrease than the ET0 temperature-based methods.
The evidence of increasing evaporative demand is supported
by the trends in potential evaporation in Spain, measured
directly using pan and Piché evaporimeters (supplementary
figure 21 available at stacks.iop.org/ERL/9/044001/mmedia).
Both measurements show an increase of around 18mm
decade−1 in summer (May–August) potential evaporation
(since the 1980s and the 1960s for the pan and Piché
evaporimeters, respectively).

Increased climate drought severity should be evident in
increased impacts on systems sensitive to drought, including

soil moisture, crops, streamflow and natural vegetation. We
analyzed long series of streamflow data from a dense network
of river gauges in the IP, and found significant downward trends
(−9.0 km3 decade−1; p < 0.01) in streamflow measured at the
mouths of major IP rivers (supplementary figure 22 available
at stacks.iop.org/ERL/9/044001/mmedia) from 1961 to 2009
(figure 3(A)). There was a strong correlation (r = 0.85;
p < 0.01) between the time series for streamflow and the
observed decrease in precipitation (−10.2 km3 decade−1;
figure 3(B)). Nevertheless, the runoff coefficient (the pro-
portion between annual precipitation and annual streamflow)
showed a significant decrease (figure 3(C)), implying that
streamflow decreased more than precipitation. This coin-
cides with a marked increase in ET0 (10.1 km3 decade−1;
figure 3(D)), suggesting that increased evaporative demand by
the atmosphere may be contributing to the reduction in stream-
flow. This general pattern was observed at the 284 gauging
stations available throughout the IP (figure 4). As streamflows
have been markedly affected by river regulation during the
last five decades (Garcı́a-Ruiz et al 2011), some perturbation
in the streamflow response to drought variability may have
contributed to the observed trends. However, we found that
this pattern was independent of the level of river regulation
(figure 5). Thus, in the 110 natural (non-regulated) rivers
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Figure 3. Evolution of parameters in the main hydrological basins of the Iberian Peninsula (see supplementary figure 22 available at
stacks.iop.org/ERL/9/044001/mmedia), including: (A) total annual (September–August) streamflow at the outflow (blue line);
(B) precipitation (dark blue line); (C) runoff coefficient (ratio between precipitation and streamflow; brown line); and (D) ET0 (red line).
The scatterplot (inset) shows the relationship between annual ET0 and the annual streamflow/precipitation ratio.

the evolution of the runoff coefficient showed a significant
decrease (p < 0.01) consistent with increased ET0. The
decrease in the runoff coefficient was more acute in regulated
and highly regulated rivers, which was not unexpected given
that large reservoirs in the basins favor direct evaporation. In
addition, these basins are associated with large irrigated areas
that favor actual evapotranspiration under increased ET0.

Analysis of the correlations among the SPI, SPEI and SSI
for the main IP rivers showed there were stronger correla-
tions between the SSI and the SPEI than between the SSI
and the SPI. Streamflow droughts increased in magnitude
and duration since 1961, mainly in natural and regulated
basins (supplementary figure 23 available at stacks.iop.org/
ERL/9/044001/mmedia). Thus, the percent area affected by
hydrological droughts increased after 1961 (supplementary
figure 24 available at stacks.iop.org/ERL/9/044001/mmedia),
consistent with the observed increase in climatic droughts.
The relationship between hydrological and climatic droughts is
complex, because of temporal lags between climate and hydro-
logic variables that vary as a function of factors including river
basin features and water regulation (López-Moreno et al 2013,

Skøien et al 2003). Temporal lags between climate signals and
drought can be simulated using time scales in computation
of the SPI and the SPEI. Thus, streamflow droughts at the
mouth of the main IP rivers were most strongly correlated
with the SPEI at the 6-month time scale (figure 6(A)), which
implies that precipitation and ET0 in the previous six months
determined streamflow variability. The correlation was slightly
higher with the SPEI (r = 0.69) than the SPI (r = 0.66), but
there are seasonal differences (figure 6(B)), with the highest
correlations in winter and spring and the lowest in summer,
probably because reservoir releases affect summer streamflow
variability (Lorenzo-Lacruz et al 2012). For the late spring and
early summer period (April–June), differences in correlation
between the SSI and the SPEI and between the SSI and the SPI
in the main IP rivers suggest an influence of ET0 on streamflow
drought variability (figure 6(C)). Moreover, water regulation
clearly masks a greater response of the SSI to the SPEI than
to the SPI in the main river basins of the IP, as the correlations
show that the SPEI more accurately than the SPI explains the
temporal variability of the SSI in natural basins and in summer
months, when the ET0 rates are higher. The same pattern
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Figure 4. (A) Magnitude of change in the streamflow/precipitation ratio for each of the 287 gauging stations used in the study. Blue: natural
basins; yellow: regulated basins; red: highly regulated basins. (B) Pearson’s r correlation between the annual series of the
streamflow/precipitation ratio and the annual ET0 for each of the 287 gauging stations used in the study. Blue: natural basins; yellow:
regulated basins; red: highly regulated basins. Dotted lines indicate the limit for significant correlations (p < 0.1). (C) Spatial distribution in
the magnitude of change in the streamflow/precipitation ratio, 1961–2009. (D) Spatial distribution of the Pearson’s r correlation between the
annual series of the streamflow/precipitation ratio and the annual ET0.

occurs in regulated and highly regulated rivers, although the
correlation decreases with regulation, especially in summer
when outflows from reservoirs are greater because of the need
to meet irrigation and urban demands. Consequently, for the
majority of rivers the correlation between the SSI and the SPEI
is higher than between the SSI and the SPI (supplementary
figure 25 available at stacks.iop.org/ERL/9/044001/mmedia).

4. Conclusions

Here we show that in recent decades higher atmospheric evap-
orative demand increased the severity of climatic droughts,
and contributed to the decrease in surface water resources in
the IP. This region has been subject to an increase in aridity
caused by a significant rise in temperature (1.5 ◦C annually;
2.1 ◦C in summer) coupled with a decline in precipitation
(15.6%) in the last five decades. Although drought variability

has mainly been controlled by precipitation, drought severity
has been exacerbated by greater evaporative demand by the
atmosphere, which increased by 7.3% annually and 10.4% in
summer in the period 1961–2011; this shows that the SPEI has
indicated increased drought severity relative to the SPI. These
results are affected to a very limited extent by uncertainties
related to the forcing data, as quality controlled and carefully
homogenized station data were used. Although the spatial
scale of this study was regional and not directly comparable to
global studies (Sheffield et al 2012, Dai 2013, van der Schrier
et al 2013), the observed climate trends from 1961 to 2011
are equivalent to the expected evolution in the Mediterranean
region by 2050, based on current climate change models under
the A1B scenario (Giorgi and Lionello 2008). Thus, these
climate models consistently project trends of greater warming
and drying for the IP, and consequently drought severity and
water scarcity are likely to increase in coming decades (Estrela
et al 2012). It is expected that the cumulative dryness between
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Figure 6. Climate index correlations for the main IP basins (supplementary figure 18 available at stacks.iop.org/ERL/9/044001/mmedia),
and in natural, regulated and highly regulated basins. (A) Correlations of the regional SSI to the SPI and the SPEI at time scales of
1–24 months. Red: correlation between the SPEI and the SSI. Blue: correlation between the SPI and the SSI. (B) Monthly correlations of the
SSI to the SPI and the SPEI at time scales of 1–24 months. (C) Differences in correlations between the SPEI and the SSI, and between the
SPI and the SSI.

1961 and 2050 will produce an increase in the frequency and
severity of drought events in the near future (Lehner et al 2006).

Although isolating the effects of warming on streamflow
is difficult because of the substantial human influence on river
basins, we have empirical evidence that more extreme hydro-
logical droughts may be favored by higher ET0, confirmed
through observation of both natural and regulated basins. In
addition, proxy indicators point to increasing drought severity
as a consequence of temperature rise, with natural systems
that depend on soil water showing decreased vegetation cover
(Vicente-Serrano et al 2012b) and reduced forest growth
(Carnicer et al 2011), mainly in arid areas. Plant species in
these areas are acclimated to frequent precipitation droughts,
but increased temperature and ET0 are introducing a new
source of soil moisture stress that is probably the explanation
for the increased ecological impacts and the reduction in
available water resources. Based on temperature projections
for the mid-21st century in southern Europe, the vulnerability
of hydrological systems to drought will probably increase, and
adjustments to the demand and management of increasingly
scarce water resources will be necessary to enable adaptation
to future drought events (Garcı́a-Ruiz et al 2011).
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Sistema Nacional de Informaçâo de Recursos Hı́dricos of Por-
tugal for providing the databases used in this study. This work
has been supported by research projects CGL2011-27574-
CO2-02, CGL2011-27536 and CGL2011–24185 financed
by the Spanish Commission of Science and Technology
and FEDER, ‘Demonstration and validation of innovative
methodology for regional climate change adaptation in the
Mediterranean area (LIFE MEDACC)’ financed by the LIFE
programme of the European Commission, CTTP1/12, financed
by the Comunidad de Trabajo de los Pirineos, and QSECA
(PTDC/AAG-GLO/4155/2012) funded by the Portuguese
Foundation for Science and Technology (FCT). ASL was
supported by a postdoctoral fellowship from the Catalan
Government (2011 BP-B 00078) and CAM was supported
by a Juan de la Cierva fellowship by the Spanish Government.

References

Allen R G, Pereira L S and Raes D 1998 Crop evapotranspiration
Guidelines for Computing Crop Water Requirements (FAO
Irrigation and Drainage Paper) vol 56 (Rome: FAO)

Azorin-Molina C, Vicente-Serrano S M, McVicar T R, Jerez S,
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