3,092 research outputs found

    How isomaltulose and oligofructose affect physicochemical and sensory properties of muffins?

    Full text link
    This is the peer reviewed version of the following article: Castelló, ML, Echevarrías, A, Rubio-Arraez, S, Ortolá, MD. How isomaltulose and oligofructose affect physicochemical and sensory properties of muffins J Texture Stud. 2021; 52: 410-419, which has been published in final form at https://doi.org/10.1111/jtxs.12602. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving.[EN] This article analyses, the replacement of sucrose in muffins with nine different combinations of isomaltulose and oligofructose. Being a structural isomer of sucrose with approx. 50% of sucrose sweetness, isomaltulose is non-cariogenic and with a low glycemic profile but having the same calories as sucrose. Oligofructose is composed of fructose polymers, with a reduced caloric value and prebiotic effect. Specifically, height, percentage of alveoli, water content, A(w), mechanical, and optical properties have been measured along with a sensory evaluation. The results showed that all combinations of sweeteners gave place to softer muffins than control ones. Moreover, isomaltulose caused a darkening of the products likely due to an enhancement of the Maillard reactions. The highest amount of isomaltulose and the absence of sucrose meant the worst score in sweetness and flavor due to the low sweetening powder of isomaltulose.GENERALITAT VALENCIANA, Grant/Award Number: AICO/2017/043Castelló Gómez, ML.; Echevarrías, A.; Rubio-Arraez, S.; Ortolá Ortolá, MD. (2021). How isomaltulose and oligofructose affect physicochemical and sensory properties of muffins?. Journal of Texture Studies. 52(3):410-419. https://doi.org/10.1111/jtxs.12602S41041952

    The nuclear and extended infrared emission of the Seyfert galaxy NGC 2992 and the interacting system Arp 245

    Get PDF
    We present subarcsecond resolution infrared (IR) imaging and mid-IR spectroscopic observations of the Seyfert 1.9 galaxy NGC 2992, obtained with the Gemini North Telescope and the Gran Telescopio CANARIAS (GTC). The N-band image reveals faint extended emission out to ~3 kpc, and the PAH features detected in the GTC/CanariCam 7.5-13 micron spectrum indicate that the bulk of this extended emission is dust heated by star formation. We also report arcsecond resolution MIR and far-IR imaging of the interacting system Arp 245, taken with the Spitzer Space Telescope and the Herschel Space Observatory. Using these data, we obtain nuclear fluxes using different methods and find that we can only recover the nuclear fluxes obtained from the subarcsecond data at 20-25 micron, where the AGN emission dominates. We fitted the nuclear IR spectral energy distribution of NGC 2992, including the GTC/CanariCam nuclear spectrum (~50 pc), with clumpy torus models. We then used the best-fitting torus model to decompose the Spitzer/IRS 5-30 spectrum (~630 pc) in AGN and starburst components, using different starburst templates. We find that, whereas at shorter mid-IR wavelengths the starburst component dominates (64% at 6 micron), the AGN component reaches 90% at 20 micron. We finally obtained dust masses, temperatures and star formation rates for the different components of the Arp 245 system and find similar values for NGC 2992 and NGC 2993. These measurements are within those reported for other interacting systems in the first stages of the interaction.Comment: 20 pages, 12 figures, accepted by MNRA

    Noise models for superoperators in the chord representation

    Full text link
    We study many-qubit generalizations of quantum noise channels that can be written as an incoherent sum of translations in phase space. Physical description in terms of the spectral properties of the superoperator and the action in phase space are provided. A very natural description of decoherence leading to a preferred basis is achieved with diffusion along a phase space line. The numerical advantages of using the chord representation are illustrated in the case of coarse-graining noise.Comment: 8 pages, 5 .ps figures (RevTeX4). Submitted to Phys. Rev. A. minor changes made, according to referee suggestion

    Semiclassical approach to fidelity amplitude

    Full text link
    The fidelity amplitude is a quantity of paramount importance in echo type experiments. We use semiclassical theory to study the average fidelity amplitude for quantum chaotic systems under external perturbation. We explain analytically two extreme cases: the random dynamics limit --attained approximately by strongly chaotic systems-- and the random perturbation limit, which shows a Lyapunov decay. Numerical simulations help us bridge the gap between both extreme cases.Comment: 10 pages, 9 figures. Version closest to published versio

    Interstitial cells of Cajal and enteric nervous system in gastrointestinal and neurological pathology. Relation to oxidative stress

    Get PDF
    The enteric nervous system (ENS) is organized into two plexuses—submucosal and myenteric—which regulate smooth muscle contraction, secretion, and blood flow along the gastrointestinal tract under the influence of the rest of the autonomic nervous system (ANS). Interstitial cells of Cajal (ICCs) are mainly located in the submucosa between the two muscle layers and at the intramuscular level. They communicate with neurons of the enteric nerve plexuses and smooth muscle fibers and generate slow waves that contribute to the control of gastrointestinal motility. They are also involved in enteric neurotransmission and exhibit mechanoreceptor activity. A close relationship appears to exist between oxidative stress and gastrointestinal diseases, in which ICCs can play a prominent role. Thus, gastrointestinal motility disorders in patients with neurological diseases may have a common ENS and central nervous system (CNS) nexus. In fact, the deleterious effects of free radicals could affect the fine interactions between ICCs and the ENS, as well as between the ENS and the CNS. In this review, we discuss possible disturbances in enteric neurotransmission and ICC function that may cause anomalous motility in the gut

    Probing the Nuclear and Circumnuclear Activity of NGC1365 in the Infrared

    Get PDF
    We present new far-infrared (70-500micron) Herschel PACS and SPIRE imaging observations as well as new mid-IR Gemini/T-ReCS imaging (8.7 and 18.3micron) and spectroscopy of the inner Lindblad resonance (ILR) region (R<2.5kpc) of the spiral galaxy NGC1365. We complemented these observations with archival Spitzer imaging and spectral mapping observations. The ILR region of NGC1365 contains a Seyfert 1.5 nucleus and a ring of star formation with an approximate diameter of 2kpc. The strong star formation activity in the ring is resolved by the Herschel/PACS imaging data, as well as by the Spitzer 24micron continuum emission, [NeII]12.81micron line emission, and 6.2 and 11.3micron PAH emission. The AGN is the brightest source in the central regions up to lambda~24micron, but it becomes increasingly fainter in the far-infrared when compared to the emission originating in the infrared clusters (or groups of them) located in the ring. We modeled the AGN unresolved infrared emission with the CLUMPY torus models and estimated that the AGN contributes only to a small fraction (~5%) of the infrared emission produced in the inner ~5kpc. We fitted the non-AGN 24-500micron spectral energy distribution of the ILR region and found that the dust temperatures and mass are similar to those of other nuclear and circumnuclear starburst regions. Finally we showed that within the ILR region of NGC1365 most of the on-going star formation activity is taking place in dusty regions as probed by the 24micron emission.Comment: Accepted for publication in MNRA

    Phenotypic profile of expanded NK cells in chronic lymphoproliferative disorders: a surrogate marker for NK-cell clonality

    Get PDF
    Currently, the lack of a universal and specific marker of clonality hampers the diagnosis and classification of chronic expansions of natural killer (NK) cells. Here we investigated the utility of flow cytometric detection of aberrant/altered NK-cell phenotypes as a surrogate marker for clonality, in the diagnostic work-up of chronic lymphoproliferative disorders of NK cells (CLPD-NK). For this purpose, a large panel of markers was evaluated by multiparametric flow cytometry on peripheral blood (PB) CD56low NK cells from 60 patients, including 23 subjects with predefined clonal (n = 9) and polyclonal (n = 14) CD56low NK-cell expansions, and 37 with CLPD-NK of undetermined clonality; also, PB samples from 10 healthy adults were included. Clonality was established using the human androgen receptor (HUMARA) assay. Clonal NK cells were found to show decreased expression of CD7, CD11b and CD38, and higher CD2, CD94 and HLADR levels vs. normal NK cells, together with a restricted repertoire of expression of the CD158a, CD158b and CD161 killer-associated receptors. In turn, NK cells from both clonal and polyclonal CLPD-NK showed similar/overlapping phenotypic profiles, except for high and more homogeneous expression of CD94 and HLADR, which was restricted to clonal CLPD-NK. We conclude that the CD94hi/HLADR+ phenotypic profile proved to be a useful surrogate marker for NK-cell clonality
    corecore