23 research outputs found

    3D virtual histology at the host/parasite interface: visualisation of the master manipulator, Dicrocoelium dendriticum, in the brain of its ant host

    Get PDF
    Some parasites are able to manipulate the behaviour of their hosts to their own advantage. One of the most well-established textbook examples of host manipulation is that of the trematode Dicrocoelium dendriticum on ants, its second intermediate host. Infected ants harbour encysted metacercariae in the gaster and a non-encysted metacercaria in the suboesophageal ganglion (SOG); however, the mechanisms that D. dendriticum uses to manipulate the ant behaviour remain unknown, partly because of a lack of a proper and direct visualisation of the physical interface between the parasite and the ant brain tissue. Here we provide new insights into the potential mechanisms that this iconic manipulator uses to alter its host’s behaviour by characterising the interface between D. dendriticum and the ant tissues with the use of non-invasive micro-CT scanning. For the first time, we show that there is a physical contact between the parasite and the ant brain tissue at the anteriormost part of the SOG, including in a case of multiple brain infection where only the parasite lodged in the most anterior part of the SOG was in contact with the ant brain tissue. We demonstrate the potential of micro-CT to further understand other parasite/host systems in parasitological research.Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

    Impact vaporization and Condensation: Laser Irradiation Experiments with Natural Planetary Materials

    Get PDF
    0000-0002-4414-4917The attached files are the published version of the article from the 49th Lunar and Planetary Science Conference 2018 (LPI Contrib. No. 2083), and the open access abstract (Geophysical Research Abstracts, Vol. 20, EGU2018-16223, 2018, EGU General Assembly 2018, © Author(s) 2018. CC Attribution 4.0 license.

    New insights from old eggs – the shape and thickness of Great Auk Pinguinus impennis eggs

    Get PDF
    We compared the shape and eggshell thickness of Great Auk Pinguinus impennis eggs with those of its closest relatives, the Razorbill Alca torda, Common Guillemot Uria aalge and Brünnich's Guillemot Uria lomvia, in order to gain additional insights into the breeding biology of the extinct Great Auk. The egg of the Great Auk was most similar in shape to that of Brünnich's Guillemot. The absolute thickness of the Great Auk eggshell was greater than that of the Common Guillemot and Razorbill egg, which is as expected given its greater size, but the relative shell thickness at the equator and pointed end (compared with the blunt end) was more similar to that of the Common Guillemot. On the basis of these and other results we suggest that Great Auk incubated in an upright posture in open habitat with little or no nest, where its pyriform egg shape provided stability and allowed safe manoeuvrability during incubation. On the basis of a recent phylogeny of the Alcidae, we speculate that a single brood patch, a pyriform egg and upright incubation posture, as in the Great Auk and the two Uria guillemots, is the ancestral state, and that the Razorbill – the Great Auk's closest relative – secondarily evolved two brood patches and an elliptical egg as adaptations for horizontal incubation, which provides flexibility in incubation site selection, allowing breeding in enclosed spaces such as crevices, burrows or under boulders, as well as on open ledges.© 2020 British Ornithologists' Union. The attached document is the author(’s’) final accepted/submitted version of the journal article. You are advised to consult the publisher’s version if you wish to cite from it

    All Our Eggs In One Basket: Challenges of High Resolution X-Ray Micro-Computed Tomography of Great Auk Pinguinus impennis Eggshell

    Get PDF
    © Russell D et al. This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.NHM Repositor

    Uncovering the hidden half of plants using new advances in root phenotyping

    Get PDF
    Major increases in crop yield are required to keep pace with population growth and climate change. Improvements to the architecture of crop roots promise to deliver increases in water and nutrient use efficiency but profiling the root phenome (i.e., its structure and function) represents a major bottleneck. We describe how advances in imaging and sensor technologies are making root phenomic studies possible. However, methodological advances in acquisition, handling and processing of the resulting ‘big-data’ is becoming increasingly important. Advances in automated image analysis approaches such as Deep Learning promise to transform the root phenotyping landscape. Collectively, these innovations are helping drive the selection of the next-generation of crops to deliver real world impact for ongoing global food security efforts

    Investigating the microstructure of plant leaves in 3D with lab-based X-ray Computed Tomography

    Get PDF
    Background Leaf cellular architecture plays an important role in setting limits for carbon assimilation and, thus, photosynthetic performance. However, the low density, fine structure, and sensitivity to desiccation of plant tissue has presented challenges to its quantification. Classical methods of tissue fixation and embedding prior to 2D microscopy of sections is both laborious and susceptible to artefacts that can skew the values obtained. Here we report an image analysis pipeline that provides quantitative descriptors of plant leaf intercellular airspace using lab-based X-ray Computed Tomography (microCT). We demonstrate successful visualisation and quantification of differences in leaf intercellular airspace in 3D for a range of species (including both dicots and monocots) and provide a comparison with a standard 2D analysis of leaf sections. Results We used the microCT image pipeline to obtain estimates of leaf porosity and mesophyll exposed surface area (Smes) for three dicot species (Arabidopsis, tomato and pea) and three monocot grasses (barley, oat and rice). The imaging pipeline consisted of (1) a masking operation to remove the background airspace surrounding the leaf, (2) segmentation by an automated threshold in ImageJ and then (3) quantification of the extracted pores using the ImageJ ‘Analyze Particles’ tool. Arabidopsis had the highest porosity and lowest Smes for the dicot species whereas barley had the highest porosity and the highest Smes for the grass species. Comparison of porosity and Smes estimates from 3D microCT analysis and 2D analysis of sections indicates that both methods provide a comparable estimate of porosity but the 2D method may underestimate Smes by almost 50%. A deeper study of porosity revealed similarities and differences in the asymmetric distribution of airspace between the species analysed. Conclusions Our results demonstrate the utility of high resolution imaging of leaf intercellular airspace networks by lab-based microCT and provide quantitative data on descriptors of leaf cellular architecture. They indicate there is a range of porosity and Smes values in different species and that there is not a simple relationship between these parameters, suggesting the importance of cell size, shape and packing in the determination of cellular parameters proposed to influence leaf photosynthetic performance

    Schwingungsspektroskopische Untersuchungen an Adsorbaten mittels Streuung niederenergetischer Elektronen

    No full text

    Functional adaptation of the calcaneus in historical foot binding

    No full text
    The normal structure of human feet is optimized for shock dampening during walking and running. Foot binding was a historical practice in China aimed at restricting the growth of female feet for aesthetic reasons. In a bound foot the shock-dampening function normally facilitated by the foot arches is withdrawn, resulting in the foot functioning as a rigid extension of the lower leg. An interesting question inspiring this study regards the nature of adaptation of the heel bone to this nonphysiological function using the parameters of cancellous bone anisotropy and 3D fabric topology and a novel intertrabecular angle (ITA) analysis. We found that the trabecular microarchitecture of the normal heel bone, but not of the bound foot, adapts to function by increased anisotropy and preferred orientation of trabeculae. The anisotropic texture in the normal heel bone consistently follows the physiological stress trajectories. However, in the bound foot heel bone the characteristic anisotropy pattern fails to develop, reflecting the lack of a normal biomechanical input. Moreover, the basic topological blueprint of cancellous bone investigated by the ITA method is nearly invariant in both normal and bound foot. These findings suggest that the anisotropic cancellous bone texture is an acquired characteristic that reflects recurrent loading conditions; conversely, an inadequate biomechanical input precludes the formation of anisotropic texture. This opens a long-sought-after possibility to reconstruct bone function from its form. The conserved topological parameters characterize the generic 3D fabric of cancellous bone, which is to a large extent independent of its adaptation to recurrent loading and perhaps determines the mechanical competence of trabecular bone regardless of its functional adaptation. © 2017 American Society for Bone and Mineral Research
    corecore