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Major increases in crop yield are required to keep pace with

population growth and climate change. Improvements to the

architecture of crop roots promise to deliver increases in water

and nutrient use efficiency but profiling the root phenome (i.e.

its structure and function) represents a major bottleneck. We

describe how advances in imaging and sensor technologies are

making root phenomic studies possible. However,

methodological advances in acquisition, handling and

processing of the resulting ‘big-data’ is becoming increasingly

important. Advances in automated image analysis approaches

such as Deep Learning promise to transform the root

phenotyping landscape. Collectively, these innovations are

helping drive the selection of the next-generation of crops to

deliver real world impact for ongoing global food security

efforts.
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Introduction
Crop production has to double by 2050 to keep pace with

global population growth. This target is even more chal-

lenging given the impact of climate change on water

availability and the drive to reduce fertilizer inputs to make

agriculture environmentally sustainable. Developing crops

with improved water and nutrient uptake efficiency would

provide a solution. As root architecture influences nutrient

and water uptake efficiency, a ‘second green revolution’ has

been proposed that deploys crops with improved below

ground traits [1]. However, selecting crops based on root

system architecture (RSA) poses practical challenges.
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This review discusses recent advances in root phenotyp-

ing. To date, classical non-destructive 2D techniques

such as agar plates or rhizotrons have been integral to

our understanding of root development (Figure 1). Non-

destructive analysis of 3D root growth is also possible

using transparent gels [2,3�,4] but results are often diffi-

cult to extrapolate to field conditions. To non-invasively

study 3D root growth in soil, more sophisticated

approaches are needed. This review explores several

promising new approaches to uncover the ‘hidden half’

of plants grown under either lab or field conditions

(Box 1). We discuss the ‘big data’ challenges associated

with root phenotyping and describe promising solutions

being developed by other disciplines, then conclude with

a forward look.

Technologies for root phenotyping under
controlled conditions
The opaque nature of soil makes phenotyping root systems

in situ challenging compared to analysing above-ground

plant organs. Non-destructive techniques under controlled

conditions have traditionally relied on rhizotrons (enclo-

sures with transparent or removable observation windows),

growth pouches, or transparent artificial growth media

(Figure 1). Images are usually two-dimensional (2D)

and, if soil is used, often fail to capture the complete root

system architecture as many roots will be occluded by soil

particles. The GLO-Root system designed for Arabidopsis
[5��] mitigates these effects by using luminescence-based

reporters for visualisation of architecture and gene expres-

sion patterns, and by combining images from both sides of

the rhizotron (Figure 1). Soil-free techniques such as

hydroponics, aeroponics, gel plates, and growth pouches

provide greater contrast between root and substrate allow-

ing accurate extraction of root system architecture,

although the root systems of plants grown in artificial media

can vary considerably from those grown in soil [6]. Pouch

systems using plants grown vertically on germination paper

have been successfully used in seedling screens for many

species including, bean [7], maize [8], wheat [9], oilseed

rape [10], and pearl millet [11]. Despite their limitations,

2D soil and artificial media systems are widely used due to

their suitability for incorporation into high-throughput root

phenotyping platforms such as GrowScreen-Rhizo [12],

Phytomorph [13], GrowScreen-PaGe [10], RADIX [14]

and RhizoTubes [15].

Plant root systems are three-dimensional (3D) structures

with many features that are difficult to quantify in 2D [3�]
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Figure 1
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2D imaging of plant roots. (a) GLO-Roots [5��]. Arabidopsis plant expressing a luminescent reporter imaged on each side of the rhizotron

(coloured green and magenta respectively) at 21 days after sowing (DAS). (b) GROWSCREEN-Rhizo [12]. A high-throughput automated root

phenotyping platform using soil-filled rhizotrons. (c) Pouch system [9] for cereal seedlings (left panel). RootNav [51] analysis software (right panel).

(d) Phytomorph [13] A high-throughput robotic imaging platform for Arabidopsis growing on agar plates.
such as the arrangement of seminal roots at the root crown

of cereals (that are often asymmetrically distributed), and

the angle and number of roots and root whorls in maize

crowns. Dynamic growth responses such as gravitropism

and circumnutation are also more readily studied in 3D

[2]. Three-dimensional representations of root systems

can be produced from multiple-viewpoint imaging of

plants grown in optically transparent media [2,3�,4] or

hydroponically using a support system [16]. One such

system was successfully used to uncover the underlying

genetic basis for several 3D root architectural traits in rice

not revealed by 2D phenotyping [3�]. Non-destructive,

3D phenotyping of roots in soil is currently achievable

using three tomographic techniques originally developed

for medical applications (Figure 2): X-ray computed

tomography (X-ray CT), magnetic resonance imaging

(MRI) and positron emission tomography (PET).

X-ray CT allows the visualisation of 3D volumes based

on differential X-ray attenuation. Although first
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demonstrated in plant roots over 30 years ago [17], only

recently has advances in scan time, resolution, reconstruc-

tion times, and image segmentation software made X-ray

CT a viable technology for root phenotyping in soil [18].

X-ray CT has been used to examine the cultivar-specific

response of rice root systems to growth medium texture

[19]; patterning of lateral roots in Arabidopsis, maize, and

rice [20]; inter-specific interactions between aspen and

spruce [21]; and to quantify roots of prairie dropseed to

parameterise computational fluid dynamics simulations

[22]. MRI employs radio-frequency waves and strong

magnetic fields to stimulate atoms (usually of hydrogen

in water) and produce a 3D spatial map [23��]. MRI has

been employed to image the root systems of soil-grown

maize, bean, sugar beet, and barley [23��,24,25]. PET

scanning visualizes the distribution of short half-life

radioactive tracers, such as carbon isotopes used in plant

metabolic processes [26]. Despite a high sensitivity for

tracers, PET is currently limited to a relatively coarse

resolution of �1.4 mm [24]. To overcome this limitation,
www.sciencedirect.com
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Box 1 Glossary of technologies applied to plant root

phenotyping

Electrical resistance tomography (ERT) — imaging of sub-surface

soil structure from maps of electrical resistivity measured via buried

probes.

Electromagnetic inductance (EMI) — mapping of spatial soil elec-

trical conductivity using sensors held above the soil surface.

Ground penetrating radar (GPR) — mapping of sub-surface struc-

ture by measuring reflection, refraction, and scattering of pulses of

high-frequency radio waves. Receiving antennae may be positioned

in contact with the soil or above the soil surface.

Magnetic resonance imaging (MRI) — imaging technique based on

absorption and re-emission of electromagnetic radiation from nuclei

in a magnetic field.

Positron emission tomography (PET) — imaging technique based

on detection of gamma radiation from tracer molecules.

Rhizotron — a growth chamber with transparent or removable

observation windows through which roots can be imaged.

X-ray computed tomography (X-ray CT) — imaging technique

based on attenuation of X-rays to create cross-sections for recon-

struction into a 3D model.
PET is often combined with other tomographic techni-

ques including MRI [24], X-ray CT [26], and optical

projection tomography [4].

Both X-ray CT and MRI can be used for monitoring root

system growth over time, with no adverse effects of

repeated scanning on plant development [23��,27],
although care should be taken in X-ray CT experiments

to monitor any impact of repeated scans on root develop-

ment and soil biota [27]. MRI and X-ray CT can be seen

as complimentary technologies, with their own advan-

tages and limitations [28]. However, MRI is more depen-

dent than X-ray CT on the choice of substrate with initial

experiments requiring specific soils or the removal of

ferromagnetic particles [29]. A recent study of eight

substrates (6 natural soils and 2 artificial mixtures)

reported five suitable for root segmentation via MRI in

barley plants (including the two artificial mixtures). Of

the three natural soils deemed unsuitable to MRI, two

were able to be used to resolve thicker roots [29]. Both

MRI and X-ray CT imaging are confounded by high soil

moisture, although both techniques are suitable for soils

held at field capacity or lower [29,30]. In their medical

applications, CT scanners and MRI machines are usually

arranged for horizontal sample loading. The availability of

non-medical X-ray CT scanners with vertical sample

loading has, combined with the lower equipment cost,

led to a wider adoption of this technology for plant

phenotyping compared to MRI.

Root phenotyping in the field
Field-based phenotyping has seen significant advances in

recent years with sensor technologies to quantify canopy
www.sciencedirect.com 
traits (including LIDAR, multi- and hyperspectral imag-

ing, thermography, and RGB imaging) deployed on

drones, tractor mounts and gantry systems [31–35]. Phe-

notyping for root traits in the field has seen comparatively

less advancement, largely due to the difficulties associ-

ated with imaging below-ground. Classic methods such as

the soil core-break are widely used, with this protocol

being recently improved by employing UV illumination

and fluorescence spectroscopy to enhance soil-root image

contrast and allowing automated image capture and pro-

cessing of core-break faces [36].

Shovelomics [37], or root crown phenotyping, is one of the

most widely adopted high-throughput field methods. The

protocol, originally designed for maize, has been adapted for

other species including legumes [38] and wheat [39]. Sho-

velomics generates a number of key root architecture param-

eters including crown rootnumberand angle [37]. Automatic

image analysis software such as DIRT [40] and REST [41]

have further increased throughput; however, the rate-limit-

ing step is still the manual excavation of the crown root

system. Automation of this labour-intensive process is being

addressed by researchers at Pennsylvania State University in

the DEEPER project, part of the ARPA-E funded ROOTS

programthat includes interaliadevelopmentoffield-deploy-

able X-ray CT and MRI platforms [42].

Development of non-invasive geophysical techniques to

study the root and soil profile has also advanced in recent

years. This includes Electrical Resistance Tomography

(ERT) that measures soil water profiles. Most commonly

used to analyse large diameter root profiles (e.g. trees [43]),

ERT has seen limited adoption to date in the areas of crop

phenotyping [44]. Although ERT is non-destructive and

significantly higher throughput than traditional coring

methods, it is limited by the number of probe arrays that

can be placed in the field and is still considered low

throughputcomparedtoothergeophysicalapproachessuch

as electromagnetic inductance (EMI). EMI is significantly

higher throughput than ERT as it does not require probes

or direct contact with the soil [45] and was recently imple-

mented to quantify root activity in wheat [46��]. For a

detailed comparison of ERT, EMI and penetrometer

methods for measuring differences in soil water profiles

at the plot scale between genotypes, see [46��].

Ground penetrating radar (GPR), another geophysical

technique of similar throughput to EMI, uses high fre-

quency radio waves to detect objects or boundaries

between materials in the ground based on their permit-

tivity. GPR, like EMI, has been used to detect and

quantify tree roots, but does not currently have the

resolution to detect roots less than 2 mm in diameter

(reviewed in [47]). Despite this, GPR has recently been

used to detect bulk root biomass in wheat and sugar cane

(although with limited ability to detect differences

between genotypes [48]) and shows potential as a future
Current Opinion in Biotechnology 2019, 55:1–8
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Figure 2
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3D tomographic imaging of plant roots. (a) X-ray CT micrograph of a wheat seedling 12 DAS. (b) MRI imaging of a maize root system at 6, 9, 12,

and 15 DAS [23��]. Upper panel, MRI data (2D maximum intensity projection). Lower panel, 3D surface render. Scale bar: 20 mm. (c) Maize roots

imaged using MRI-PET [24]. Two plants are growing in the same pot. The greyscale image is MRI, the colour is 11C PET data following application

to a leaf of one plant. (d) OpenSimRoot [65] simulation using output from (a) to model rhizosphere N depletion. (e) Maize root imaged at 9 DAS

using optical projection tomography (OPT) and PET [4]. The black and white image is OPT, the colour is 11C PET data.
phenotyping tool, perhaps in combination with other

geophysical sensors.

Advances in root image analysis
As high-throughput image capture of root systems has

become mainstream and generates ever larger datasets,

there is a requirement for fast and accurate software

solutions to reliably derive traits. Until fairly recently,

software has focused on 2D imaging paradigms, resulting

in a large number of tools, exhibiting a mixture of manual

(e.g. DART [49]), semi-automatic (e.g. SmartRoot [50],

RootNav [51]), and fully automated (e.g. EZ-Rhizo [52],

GiA Roots [53], DIRT [40]) approaches (Figure 3). Soft-

ware in this area has traditionally relied heavily on the

assumption that root images are consistent across an

experiment, and that the root system exhibits high con-

trast against the background. Where this is the case,

image thresholding to identify root material as reliably
Current Opinion in Biotechnology 2019, 55:1–8 
lighter or darker than the background has proven effec-

tive [51,53]. Thresholding alone can be susceptible to

image noise, where image pixels are incorrectly assigned

as either root material, or background. It has been com-

mon practice to perform corrective filtering of segmented

images prior to analysis of the RSA. Morphological opera-

tions such as erosion and dilation can be used to correct

small errors, and skeletonisation may be used to simplify

the root structure to make topological analysis and trait

measurement more straightforward. [52,53] are examples

of tools that take this approach.

Following the identification of root material within an

image, RSA traits such as width are easily derived. Some

tools, such as EZRhizo [52] andWinRhizo [54] utilise pixel-

distance transforms to approximate the width of each root,

deriving a frequency distribution of root size within an

image. These tools operate automatically but become less
www.sciencedirect.com
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Figure 3
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Automated root image analysis software. (a) DIRT [40] measures traits based on the ‘shovelomics’ approach [37]. Root systems are washed, and

imaged from above in front of a dark background. Root systems are separated from background via thresholding, and RSA traits derived from

each segmented object. (b) Root-soil segmentation in X-Ray CT [61]. Root and soil pixels are identified via a Support Vector Machine classifier

trained on deep-learned features. Images show the ground-truth, original image, and SVM classifier output. (c) End-to-end deep learning for root

tip identification [59�]. A deep network trained on thousands of instances of root tips and negative samples can be passed over an entire image to

obtain likely root tip locations.
reliable where root systems exhibit complex topology,

including bunched roots and crossovers. Some tools have

attempted to “track” the root system, maintaining a link

between the bases and apices of roots to form coherent

geometries rather than isolated pixels. RootTrace [55], for

example, uses a particle filtering framework to track Arabi-
dopsis roots from base to apex on agar plates. SmartRoot [50]

uses a semi-automatic approach to follow root material once

first identified by a user. RootNav [51] is also semi-auto-

mated, seeking the shortest path on the image between

user-identified seed and root tip locations.

3D root analysis software is less developed, with fewer tools

available. Multi-view reconstruction from RGB images has

been applied to roots grown in transparent media [2,3�]. For

MRI data, [56] used Frangi filters to highlight tubular

structures in the 3D image, before applying a shortest path

search to obtain root topology. The root structure is then

cleaned using a tree-pruning approach. In X-ray CT

images, RooTrak [57] utilises a level set tracking approach

to follow roots within a soil column and has been extended

to handle multiple competing root systems [58].
www.sciencedirect.com 
Deep machine learning is becoming a standard technique

for many computer vision problems as large annotated

datasets become available. Within plant science, the

majority of deep learning has been applied to plant

shoots. For 2D root images, tip locations have been

identified using a deep network-based classifier, scanned

over an image to produce a location map [59�]. After

training, deep learning algorithms delivered impressive

improvements in tip detection (>99%) compared other

approaches (<60%) [59�]. Deep learning thus has the

potential to reduce the reliance on user-input to increase

both the throughput and quality of phenotypic data [60].

For 3D images, deep learning has been applied to the

root-soil segmentation problem, where deep learned fea-

tures are used to drive a Support Vector Machine classi-

fying root/soil pixels [61].

Future perspectives
This review has focused on recent advances in phenotyp-

ing plant root architecture, particularly in the field of non-

destructive 3D imaging of root systems. The next chal-

lenge is to incorporate these techniques into phenotyping
Current Opinion in Biotechnology 2019, 55:1–8
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platforms with throughputs comparable to 2D systems to

allow large-scale quantitative genetic studies. Selecting

crops based on their root anatomical traits also represents

a promising approach. For example, maize lines with

increased root airspaces (root cortical aerenchyma;

RCA) grown under drought stress in smallholder plots

in Malawi had 78–143% greater yield than crops with less

RCA [62�]. Similarly, root xylem diameter has been

linked with conservation of water resources to aid grain

filling in wheat [63�]. To date, screening for root anatom-

ical traits is very time consuming. However, the recent

development of high-throughput 2D and 3D anatomical

phenotyping approaches employing microtoming [64]

and laser ablation tomography [62�], respectively, makes

it possible to profile the thousands of root samples

required for breeding programmes.

Advances in data acquisition, handling and processing are

becoming increasingly important to plant phenotyping

[65]. Integrating innovative approaches such as deep

learning into root phenotyping pipelines will require

researchers to actively engage with computer scientists.

Similar challenges and opportunities face researchers

wanting to employ in silico models to probe how multiple

root architectural and anatomical traits interact to impact

plant performance. The development of open-source

software such as OpenSimRoot and RootBox

[66�,67,68] promises to greatly aid modelling efforts by

root researchers and provide invaluable insight into the

highly non-linear interactions between root phenotypes.

Such multi-disciplinary approaches will underpin efforts

to develop crops with improved root systems and help

address the urgent need for future crops better adapted to

the challenge of climate change.
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