134 research outputs found

    Advancing the Evidence Base of Sport for Development: A New Open-Access, Peer-Reviewed Journal

    Full text link
    We are pleased to release the first edition of the Journal of Sport for Development (JSFD) and we would like to take this opportunity to briefly describe its origins and objectives. In doing so, we endeavour to clarify for researchers, implementers, funders and policy-makers how we believe JSFD fits into the expanding sport for development (SFD) landscape. It is widely accepted that the United Nations International Year of Sport and Physical Education (IYSPE) in 2005 was an advocacy success and sparked a mass expansion in the SFD sector.1 This built on several previous international resolutions that recognised recreational play as a human right and emphasised the social potential of sport.2-9 Over the last decade, SFD has enjoyed widespread and international growth, in terms of resources, constituents, and public awareness.10 During this period several entities have attempted to define and demarcate the SFD sector. We believe that establishing a common definition is a critical step towards unifying a diverse range of stakeholders, many of which separately articulate the role of sport for social change and peace. However, we prefer to view these areas as integral parts of the sector and have adapted a previously described broad and inclusive definition for SFD

    Nothing but Relativity, Redux

    Full text link
    Here we show how spacetime transformations consistent with the principle of relativity can be derived without an explicit assumption of the constancy of the speed of light, without gedanken experiments involving light rays, and without an assumption of differentiability, or even continuity, for the spacetime mapping. Hence, these historic results could have been derived centuries ago, even before the advent of calculus. This raises an interesting question: Could Galileo have derived Einsteinian relativity

    Src Binds Cortactin Through An Sh2 Domain Cystine-Mediated Linkage

    Get PDF
    Tyrosine-kinase-based signal transduction mediated by modular protein domains is critical for cellular function. The Src homology (SH)2 domain is an important conductor of intracellular signaling that binds to phosphorylated tyrosines on acceptor proteins, producing molecular complexes responsible for signal relay. Cortactin is a cytoskeletal protein and tyrosine kinase substrate that regulates actin-based motility through interactions with SH2-domain-containing proteins. The Src kinase SH2 domain mediates cortactin binding and tyrosine phosphorylation, but how Src interacts with cortactin is unknown. Here we demonstrate that Src binds cortactin through cystine bonding between Src C185 in the SH2 domain within the phosphotyrosine binding pocket and cortactin C112/246 in the cortactin repeats domain, independent of tyrosine phosphorylation. Interaction studies show that the presence of reducing agents ablates Src-cortactin binding, eliminates cortactin phosphorylation by Src, and prevents Src SH2 domain binding to cortactin. Tandem MS/MS sequencing demonstrates cystine bond formation between Src C185 and cortactin C112/246. Mutational studies indicate that an intact cystine binding interface is required for Src-mediated cortactin phosphorylation, cell migration, and pre-invadopodia formation. Our results identify a novel phosphotyrosine-independent binding mode between the Src SH2 domain and cortactin. Besides Src, one quarter of all SH2 domains contain cysteines at or near the analogous Src C185 position. This provides a potential alternative mechanism to tyrosine phosphorylation for cysteine-containing SH2 domains to bind cognate ligands that may be widespread in propagating signals regulating diverse cellular functions

    Have we seen the geneticisation of society? Expectations and evidence

    Get PDF
    Abby Lippman’s geneticization thesis, of the early 1990s, argued and anticipated that with the rise of genetics, increasing areas of social and health related activities would come to be understood and defined in genetic terms leading to major changes in society, medicine and health care. We review the considerable literature on geneticization and consider how the concept stands both theoretically and empirically across scientific, clinical, popular and lay discourse and practice. Social science scholarship indicates that relatively little of the original claim of the geneticization thesis has been realised, highlighting the development of more complex and dynamic accounts of disease in scientific discourse and the complexity of relationships between bioscientific, clinical and lay understandings. This scholarship represents a shift in social science understandings of the processes of sociotechnical change, which have moved from rather simplistic linear models to an appreciation of disease categories as multiply understood. Despite these shifts, we argue that a genetic imaginary persists, which plays a performative role in driving investments in new gene-based developments. Understanding the enduring power of this genetic imaginary and its consequences remains a key task for the social sciences, one which treats ongoing genetic expectations and predictions in a sceptical yet open way

    Microfluidic analysis techniques for safety assessment of pharmaceutical nano- and microsystems

    Get PDF
    This chapter reviews the evolution of microfabrication methods and materials, applicable to manufacturing of micro total analysis systems (or lab‐on‐a‐chip), from a general perspective. It discusses the possibilities and limitations associated with microfluidic cell culturing, or so called organ‐on‐a‐chip technology, together with selected examples of their exploitation to characterization of pharmaceutical nano‐ and microsystems. Materials selection plays a pivotal role in terms of ensuring the cell adhesion and viability as well as defining the prevailing culture conditions inside the microfluidic channels. The chapter focuses on the hepatic safety assessment of nanoparticles and gives an overview of the development of microfluidic immobilized enzyme reactors that could facilitate examination of the hepatic effects of nanomedicines under physiologically relevant conditions. It also provides an overview of the future prospects regarding system‐level integration possibilities facilitated by microfabrication of miniaturized separation and sample preparation systems as integral parts of microfluidic in vitro models.Non peer reviewe

    Characterization of DNA with an 8-oxoguanine modification

    Get PDF
    The oxidation of DNA resulting from reactive oxygen species generated during aerobic respiration is a major cause of genetic damage that, if not repaired, can lead to mutations and potentially an increase in the incidence of cancer and aging. A major oxidation product generated in cells is 8-oxoguanine (oxoG), which is removed from the nucleotide pool by the enzymatic hydrolysis of 8-oxo-2′-deoxyguanosine triphosphate and from genomic DNA by 8-oxoguanine-DNA glycosylase. Finding and repairing oxoG in the midst of a large excess of unmodified DNA requires a combination of rapid scanning of the DNA for the lesion followed by specific excision of the damaged base. The repair of oxoG involves flipping the lesion out of the DNA stack and into the active site of the 8-oxoguanine-DNA glycosylase. This would suggest that thermodynamic stability, in terms of the rate for local denaturation, could play a role in lesion recognition. While prior X-ray crystal and NMR structures show that DNA with oxoG lesions appears virtually identical to the corresponding unmodified duplex, thermodynamic studies indicate that oxoG has a destabilizing influence. Our studies show that oxoG destabilizes DNA (ΔΔG of 2–8 kcal mol−1 over a 16–116 mM NaCl range) due to a significant reduction in the enthalpy term. The presence of oxoG has a profound effect on the level and nature of DNA hydration indicating that the environment around an oxoG•C is fundamentally different than that found at G•C. The temperature-dependent imino proton NMR spectrum of oxoG modified DNA confirms the destabilization of the oxoG•C pairing and those base pairs that are 5′ of the lesion. The instability of the oxoG modification is attributed to changes in the hydrophilicity of the base and its impact on major groove cation binding
    corecore