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Summary
Tyrosine-kinase-based signal transduction mediated by modular protein domains is critical for cellular function. The Src homology
(SH)2 domain is an important conductor of intracellular signaling that binds to phosphorylated tyrosines on acceptor proteins, producing
molecular complexes responsible for signal relay. Cortactin is a cytoskeletal protein and tyrosine kinase substrate that regulates actin-

based motility through interactions with SH2-domain-containing proteins. The Src kinase SH2 domain mediates cortactin binding and
tyrosine phosphorylation, but how Src interacts with cortactin is unknown. Here we demonstrate that Src binds cortactin through cystine
bonding between Src C185 in the SH2 domain within the phosphotyrosine binding pocket and cortactin C112/246 in the cortactin

repeats domain, independent of tyrosine phosphorylation. Interaction studies show that the presence of reducing agents ablates Src-
cortactin binding, eliminates cortactin phosphorylation by Src, and prevents Src SH2 domain binding to cortactin. Tandem MS/MS
sequencing demonstrates cystine bond formation between Src C185 and cortactin C112/246. Mutational studies indicate that an intact

cystine binding interface is required for Src-mediated cortactin phosphorylation, cell migration, and pre-invadopodia formation. Our
results identify a novel phosphotyrosine-independent binding mode between the Src SH2 domain and cortactin. Besides Src, one quarter
of all SH2 domains contain cysteines at or near the analogous Src C185 position. This provides a potential alternative mechanism to

tyrosine phosphorylation for cysteine-containing SH2 domains to bind cognate ligands that may be widespread in propagating signals
regulating diverse cellular functions.

Key words: Src, SH2 domain, Cortactin, Cystine

Introduction
Signal transduction through protein-protein interactions is

essential for cellular function and is mediated by specialized

protein domains. The SH2 domain is one of the initially

discovered and best-characterized protein interaction motifs

(Koch et al., 1991). SH2 domains are ,100 amino acids in

length, and genomic analysis indicates that 121 SH2 domains are

found in 115 individual human proteins that participate in a wide

range of signaling events (Liu et al., 2006). SH2 domains

function by binding to phosphorylated tyrosine residues in target

proteins typically specified by residues in positions 22 to +4 of

the phosphotyrosine (Machida et al., 2007; Songyang et al.,

1993). SH2 domains are structurally conserved, consisting of a b-

sheet flanked by opposing a-helices (Pawson et al., 2001). A

positively charged binding pocket within the b-sheet contains the

canonical FLVRES sequence, where arginine bB5 forms the

critical electrostatic bond with two oxygen atoms in the

phosphotyrosine to generate domain-ligand binding (Kuriyan

and Cowburn, 1997). While this contact is central for SH2-

phosphotyrosine interactions, carboxyl-terminal residues within

the b-sheet create variable binding interfaces (‘‘specificity

pockets’’) that dictate ligand specificity based on the residues

flanking the phosphotyrosine (Bae et al., 2009; Müller and

Knapp, 2009; Yaffe, 2002). Though well characterized in terms

of phosphotyrosine ligand binding, emerging reports have

determined that select SH2 domains bind certain ligands

independent of tyrosine phosphorylation (Bae et al., 2009; King

et al., 2000; Liao et al., 2007). These interactions are mediated by

ligand binding to regions on the SH2 domain that either include

or exclude participation of the phosphotyrosine binding cleft,

potentially increasing the variability and complexity of SH2

domain function in signal relay systems.

Src and related tyrosine kinases are highly regulated enzymes

where the SH2 domain plays a pivotal role in controlling kinase

function. Binding of the Src SH2 domain to the phosphorylated

carboxyl-terminal tyrosine 527 is key in maintaining Src in a

closed autoinhibitory state (Okada and Nakagawa, 1989; Xu

et al., 1999). Tyrosine 527 dephosphorylation results in an

open conformation, allowing the kinase (SH1) domain to

phosphorylate substrates. Elimination of tyrosine 527 results in

constitutive kinase activation and neoplastic transformation

(Yeatman, 2004). The Src SH2 domain also potentiates kinase

activity through stable binding to several tyrosine phosphorylated

substrates, notably focal adhesion kinase (FAK) and p130CAS
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(Burnham et al., 2000; Schaller et al., 1994). Src regulates
cellular growth, division, adhesion, and motility through SH2-

mediated interactions and subsequent cis and/or trans substrate
tyrosine phosphorylation (Brown and Cooper, 1996). Elevated
growth factor signaling in human cancer leads to Src
hyperactivation, promoting tumor progression through increased

growth and invasive potential. Increased Src activity
accomplishes this by promoting tumor cell migration,
invadopodia formation, and matrix metalloproteinase (MMP)

activity (Guarino, 2010). These attributes have resulted in the
development of kinase-targeted Src inhibitory compounds that
are currently being evaluated for efficacy as anti-tumor and

-metastatic therapeutics. (Elsberger et al., 2010).

Several actin-binding proteins serve as Src targets for SH2
domain binding and phosphorylation that modulate actin
dynamics essential for whole and intracellular motility.

Cortactin is a filamentous (F)-actin binding protein that
regulates actin related protein (Arp)2/3-based actin network
formation responsible for cortical actin-based membrane

protrusion (Kirkbride et al., 2011). Src phosphorylates cortactin
at three positions (Y421/466/482 in the murine form) within a
proline (P)-rich domain near the carboxyl terminus (Huang et al.,

1998). Cortactin tyrosine phosphorylation coincides with cellular
membrane deforming events involving cortical actin remodeling,
including cell migration, pathogen uptake, endocytosis, osmotic
shock, synaptic remodeling, cell junction regulation, and

invadopodia formation (Cosen-Binker and Kapus, 2006).
Mechanistic insight to date indicates that cortactin tyrosine
phosphorylation creates binding sites for SH2 domain-containing

adaptor proteins. These include Crk during Shigella
internalization (Bougnères et al., 2004) and Nck1 in
invadopodia maturation (Oser et al., 2009). For Nck1,

additional Nck1 domains mediate the assembly of N-WASp-
containing macromolecular complexes that further enhance Arp2/
3 actin network formation (Tehrani et al., 2007). Src-mediated

cortactin phosphorylation also enhances binding of the cortactin
carboxyl-terminal SH3 domain to proline-rich domains in target
proteins (Ammer and Weed, 2008), although the molecular
details of this process are currently unclear.

While the SH2 domain has been previously shown to be solely
responsible for mediating Src association with cortactin (Okamura
and Resh, 1995), the precise SH2 Src interaction site on cortactin is

unknown. Here we demonstrate that Src associates with cortactin
through a phosphotyrosine-independent SH2 domain interaction
involving the formation of a cystine linkage. Deletion and

mutational mapping indicates that cysteine residues 112 in the
1st and 246 in the 5th cortactin repeat represent two separate
docking sites for the Src SH2 domain. Src and cortactin form a
stable redox-sensitive linkage in cells that is required for cortactin

phosphorylation. Molecular modeling of the Src SH2 domain
shows peptides containing cortactin C112 and C246 dock within
the Src phosphotyrosine-binding cleft, with cortactin cysteine

residues in close proximity to Src C185 at position bC3. Tandem
mass spectroscopy of the Src SH2 domain mixed with cortactin
peptides demonstrates formation of cystine bonds between Src

C185 and cortactin C112 and C246. Cells containing cortactin
mutants lacking C112 and C246 display reduced cortactin tyrosine
phosphorylation, motility, and adhesion. Cortactin C112/246 is

required for the formation of initial (pre-) invadopodia complexes
and extracellular matrix degradation. Our results indicate that Src
interacts with cortactin independent of tyrosine phosphorylation

through novel cystine bonding within the Src SH2 domain
phosphotyrosine-binding region. Sequence inspection indicates

that 25% of all SH2 domains contain a cysteine at, or in close
proximity to bC3, pointing to potential widespread usage of
cystine-based SH2 domain interactions in numerous signaling

pathways.

Results
The Src SH2 domain binds cortactin independent of
tyrosine phosphorylation

Src and other tyrosine kinases phosphorylate cortactin on
tyrosines 421, 466, and 482 (Ammer and Weed, 2008; Daly,
2004). Using affinity precipitation assays with purified Src SH2,
SH3, and tandem SH2/SH3 fusion proteins, we confirmed

previous work (Okamura and Resh, 1995) that the Src SH2
domain is the only region on Src responsible for binding cortactin
(supplementary material Fig. S1A). To determine whether the Src

SH2 domain can interact with any of the primary cortactin
phosphotyrosine residues, a commercial SH2 domain array was
screened with cortactin peptides surrounding the two main Src

phosphorylation targets (Y421 and Y466). Interestingly, neither
phosphorylated nor unphosphorylated peptides interacted with
the Src SH2 domain, although both peptides showed phospho-

dependent binding to the SH2 domains of the tyrosine kinases
Abl and Fyn (supplementary material Fig. S1B–D), both which
target cortactin (Boyle et al., 2007; Huang et al., 2003). We
pursued this finding utilizing GST-Src SH2 pull-down assays

from lysates of epidermal growth factor (EGF)-stimulated cells.
There was no difference between the amounts of cortactin
precipitated with the Src GST-SH2 domain from EGF-stimulated

cells compared to non-stimulated cells, even though stimulated
cells showed increased cortactin tyrosine phosphorylation
(Fig. 1A). We next evaluated the direct association of GST-Src

SH2 with cortactin using far western analysis. Cells were
transfected with FLAG-tagged constructs expressing full-length
cortactin (FL) or cortactin containing phenylalanine substitutions
at the dominant Src phosphorylation site (Y421F; Huang et al.,

1998) or all three Src phosphorylation sites (triple tyrosine
mutant; TYM). The Src SH2 domain bound cortactin at
equivalent levels from starved or EGF-stimulated cells whether

or not Src-targeted cortactin tyrosine residues were present
(Fig. 1B). The same result was obtained by GST-Src SH2 affinity
precipitation (Fig. 1C). To further confirm phosphotyrosine

independence, we assayed bacterially-produced, non-
phosphorylated recombinant cortactin by GST-SH2 affinity
precipitation. A dose-dependent increase in cortactin binding

by the Src SH2 domain was observed above saturated GST
control levels (Fig. 1D). Constitutively active Src phosphorylated
recombinant cortactin (supplementary material Fig. S2A) and
GST-Src SH2 interacts with FAK Y397 in a phosphotyrosine-

dependent manner (supplementary material Fig. S2B), indicating
that the assayed proteins retained correct functionality.

The Src SH2 domain binds to cortactin repeat 1 and
repeat 5

To identify the cortactin region responsible Src SH2 binding, we
utilized a series of deletion mutants with the systematic removal
of cortactin structural domains that independently retain their

respective functions (Weaver et al., 2001; Weed et al., 2000)
(supplementary material Fig. S3). Far western and affinity
precipitation assays indicated that GST-Src SH2 bound to the

Journal of Cell Science 125 (24)6186
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N-terminal (NT) half of cortactin (residues 1–330) rather than the

carboxyl terminal (CT) half that contains the sites of tyrosine

phosphorylation (supplementary material Fig. S2C,D).

Separation of the Arp2/3-binding N-terminal acidic (NTA)

domain from the F-actin binding repeats domain indicated that

the Src SH2 domain associated with the cortactin repeats region

(Fig. 1E). Serial deletion of individual cortactin repeats

beginning with repeat 3 and retaining the carboxyl terminus

demonstrated a significant reduction of Src SH2 domain binding

with removal of the 5th cortactin repeat (Fig. 1F). Deletion of

repeat 5 in the context of the full-length cortactin protein failed

to prevent SH2 binding (supplementary material Fig. S4A),

suggesting that there is at least one additional repeat that binds

the Src SH2 domain. To test this, we utilized a carboxyl terminal

deletion series by far western analysis where each cortactin

repeat was serially removed (supplementary material Fig. S4B).
Src SH2 binding was observed in all constructs containing repeat

1. Since either set of deletion constructs cannot clearly determine

that repeats 1 and 5 are the only repeats capable of Src SH2

binding, we created chimeric constructs by adding each

individual cortactin repeat in tandem N-terminal to repeat 6 in

the SH2-null binding R6-CT construct (supplementary material

Fig. S3). Far western assays of these constructs unambiguously

established cortactin repeat 1 and repeat 5 as individual

interaction regions for Src SH2 domain binding (Fig. 1G).

Cysteine 112 and cysteine 246 mediate cortactin binding to
the Src SH2 domain

Sequence alignment of each cortactin repeat identified cysteine
112 in repeat 1 and cysteine 246 in repeat 5 as residues that

lacked significant homology with cortactin residues in the same
position (Fig. 2A). To determine if these residues were
responsible for their respective cortactin repeats to bind the Src

SH2 domain, we mutated each cysteine individually to alanine in
the full-length wild-type molecule (WT C112A and WT C246A)
and in their respective dual tandem repeat 6 chimeras (R1R6
C112A and R5R6 C246A). Far western assays indicated that Src

SH2 binding was retained in the WT C112A and WT C246A
constructs but not by the R1R6 C112A and R5R6 C246A
chimeric mutants (Fig. 2B,C). These data indicate that C112 and

C246 function as separate, independent binding motifs for the Src
SH2 domain. Given the duplicity of these SH2 binding sites, we
mutated cysteine 112 and 246 to alanine in the WT cortactin

construct (double cysteine mutant; DCM) and tested Src SH2
binding by far western analysis and affinity precipitation.
Mutation of both cysteine residues abolished Src SH2 domain

Fig. 1. Src SH2 binding to cortactin does not involve

tyrosine phosphorylation and binds cortactin repeats 1 and

5. (A) GST and GST-Src SH2 affinity precipitation from

MTLn3 cells evaluated for cortactin tyrosine phosphorylation.

The ratio of phosphorylated cortactin levels and the

normalized amounts of total precipitated cortactin are

indicated. (B) Src SH2 far western analysis of FLAG-tagged

recombinant wild-type and cortactin phosphorylation mutants.

TYM, triple tyrosine mutant. (C) Affinity precipitation

analysis of FLAG-tagged recombinant wild-type and cortactin

phosphorylation mutants from extracts with GST-Src SH2

domain. (D) Affinity precipitation of non-phosphorylated,

recombinant cortactin with GST and GST-Src SH2.

Normalized intensity levels are shown relative to GST control.

(E) GST-SH2 domain far western blotting of the cortactin

NTA and repeats region. CT, C terminus; LC, IgG light chain;

NT, N terminus. Arrows denote position of IgG heavy chain

(HC) recognized by cross reactivity with secondary antibodies

during the blotting process. Asterisks indicate the positions of

recombinant cortactin proteins. (F) GST-SH2 far western

analysis of cortactin deletion cortactin constructs. (G) Far

western binding of the GST-Src SH2 domain to tandem

cortactin repeat chimeric constructs.

Cystine bonding between Src and cortactin 6187
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binding (Fig. 2D–E). These data indicate that cysteine 112 and

246 are required for Src SH2 association with cortactin.

Molecular modeling of cortactin C112 and C246
pentapeptides with the Src SH2 domain

Given the apparent unique binding requirements for cortactin to

the Src SH2 domain, we conducted molecular modeling with

cortactin C112 and C246 peptides to gain mechanistic insight into

how the cortactin cysteine residues might interact with the SH2

domain. The SH2 domain of Src was obtained from the published

crystal structure (Xu et al., 1997). As a positive control, a

pentapeptide encompassing Src pY527 was docked to Src SH2.

The peptide was predicted to dock in the phospho-tyrosine binding

pocket in close proximity with the bB5 arginine 175 (Fig. 3A).

The phosphotyrosine in the docked structure displayed the

identical 2.72 Å distance between R175 and the pY527

phosphate group obtained by co-crystallization and NMR

analysis (Waksman et al., 1992). Analogous cortactin and

corresponding control pentapeptides, encompassing C112, A112,

C246, and A246, docked in the presence the SH2/pY527 complex

failed to produce sufficient binding energies predictive of cortactin

binding. This suggested that the tested cortactin peptides might

bind within the Src SH2 phosphotyrosine binding cavity. To test

this, similar docking studies were conducted in the absence of the

pY527 Src peptide. Under these conditions all cortactin peptides

were predicted to bind within the Src SH2 phospho-tyrosine

binding cleft (Fig. 3A). Interestingly, the cysteine/alanine residues

within each cortactin peptide dock in close proximity to Src C185

in the bC3 position (C112; 5.83 Å, A112; 5.96 Å, C246; 3.56 Å,

A246; 3.17 Å) (Fig. 3A). These data suggested the possibility that

cortactin C112 or C246 might form a cystine bond with Src C185

to mediate Src-cortactin binding. The predicted distances between

cortactin C112/246 and Src C185 are greater than the typical ,2 Å

distance for cystine bonds determined by Raman spectroscopy

(Van Wart et al., 1973). This difference is attributed to the inability

of the modeling program to construct disulfide bonds, as well as

program-predicted deprotonation of all cysteines in the assay,

imparting negative charges to C112/246 and Src C185. In spite of

the introduced repulsive effects, the predicted binding energies of

the C112/C246 cortactin peptides are lower than the A112/A246

peptides by 6–8 kcal/mole, suggesting a more favorable binding

affinity for the cysteine-containing cortactin peptides (Fig. 3B).

Although nearly 50% weaker than predicted pY527 peptide

binding, the presence and location of cysteine at cortactin 112 and

246 within the Src SH2 binding pocket suggested a potentially

favorable interaction with the Src SH2 domain. These data

implicate Src C185 as a key residue within the SH2 domain

responsible for cortactin binding through cystine bond formation.

Cystine bonding mediates Src SH2 binding to cortactin

To evaluate if cystine bonding mediates Src binding to cortactin,

the association of endogenous Src and cortactin was determined

Fig. 2. Cortactin cysteines 112 and 246 are required for

Src SH2 domain binding. (A) Alignment of cortactin

repeats denoting C112 and C246. (B,C) Far western

blotting of GST-Src SH2 domain with cortactin cysteine to

alanine mutants. CT, C terminus; HC, IgG heavy chain; LC,

IgG light chain; NT, N terminus; WT; full-length wild-type

cortactin. Dashed line separates HC from chimeric cortactin

proteins (asterisks) due to similar molecular weights.

(D) Far western analysis of Src SH2 domain binding to the

C112/C246A cortactin double cysteine mutant (DCM).

(E) Affinity precipitation analysis of Src SH2 domain

binding to the C112/C246A cortactin double cysteine

mutant (DCM).

Journal of Cell Science 125 (24)6188
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under differential redox conditions. Cortactin specifically co-

immunoprecipitated with Src from UMSCC1 HNSCC cells

migrated at the typical 70 kDa Mr when immune complexes

were incubated with 2-mercaptoethanol and analyzed by SDS-

PAGE and Western blotting (Fig. 4A). However, cortactin Mr

was severely retarded when immunoprecipitates were prepared in

the absence of reductant, banding as several higher molecular

weight species at 90, 120 and 165 kDa (Fig. 4A). A similar

pattern was observed for Src in cortactin immunoprecipitates

(Fig. 4B), indicating that a subset of Src and cortactin complex

under oxidative conditions required for cystine bonding.

Cortactin phosphorylation by Src is also oxidation dependent,

as incubation of Src immunoprecipitates with purified

recombinant cortactin in the presence of dithiothreitol (DTT)

prevents Src phosphorylation of cortactin Y421 (Fig. 4C).

Since Src C185 is predicted to be the key residue mediating Src-

cortactin bonding, Src C185 was mutated to alanine (C185A) and

the recombinant SH2 domain assayed for cortactin binding.
C185A eliminated WT cortactin binding but did not perturb

phosphotyrosine-dependent binding to FAK (Fig. 4D–E).
Mutation of the arginine responsible for phosphotyrosine binding
(R175) to alanine did not alter binding to WT or NT cortactin,
verifying phosphotyrosine independence (supplementary material

Fig. S5). Reduction of the Src SH2 domain with DTT did not
impact binding to FAK but abolished cortactin binding (Fig. 4D).

To directly verify the existence of cystine bonding between Src

C185 and cortactin C112/246, we incubated the GST-Src SH2
domain with saturating amounts of 7-mer peptides encompassing
cortactin C112 and C246 in the absence of reducing agents.

Control (GST-SH2 alone) and SH2-cortactin peptide mixtures
were subjected to LC-MS/MS to identify cystine bonding
between the Src SH2 domain and each cortactin peptide. The
predicted trypsin digest product from the Src SH2 domain

containing C185 is a 14-mer peptide with C185 in position four.
The fragment composition and mass for the Src SH2 domain
alone and cystine-bound to the digested C112 and C246 cortactin

peptides are shown in Fig. 5A. Fragmentation and subsequent
spectral sequence analysis indicated that cystine bonding
occurred between Src C185 and cortactin C112 or C246, as

evidenced by mass shifts of the b4 ions in the Src C185 peptide
fragment in experiments containing cortactin C112 (Fig. 5B vs
Fig. 5C) and C246 (Fig. 5B vs Fig. 5D) peptides. Analogous

shifts were observed upon inspection of the y11 ions for each
experimental condition (supplementary material Fig. S6).
Complete sequence coverage of the SH2 domain fragment from
the SH2-C112 and SH2-C246 experiments in the b- and y- planes

yielded observed peptide masses identical or very close to the
predicted mass at each ion parameter (Table 1). These data
collectively indicate that Src C185 is capable of forming cystine

bonds with cortactin C112 and C246 under oxidizing conditions,
representing a novel mode of interaction between an SH2 domain
and its respective target ligand.

Cortactin C112 and C246 are required for cortactin tyrosine
phosphorylation and Src-based cellular processes

To evaluate the impact of cortactin C112/C246 on biochemical

and cellular functions involving Src, we initially determined the
ability of Src to phosphorylate cortactin DCM. While expression
of cortactin WT with WT Src (c-Src) in murine fibroblasts

lacking Src, Yes, and Fyn (SYF) demonstrated robust cortactin
Y421 phosphorylation, expression of cortactin DCM with c-Src
resulted in a complete lack of cortactin tyrosine 421

phosphorylation (Fig. 6A). Expression of cortactin DCM in
MTLn3 cells resulted in diminished Y421 phosphorylation on par
with the phosphorylation-null cortactin TYM construct (Fig. 6B),
indicating that cortactin C112/C246 are essential for Src-

mediated cortactin phosphorylation. We next analyzed the
effect of cortactin DCM on cell migration and adhesion, two
processes that involve Src activation and downstream cortactin

tyrosine phosphorylation. Cortactin DCM expression in 1483
head and neck squamous cell carcinoma (HNSCC) cells with
stable endogenous cortactin knockdown (supplementary material

Fig. S7A) failed to rescue adhesion and migration to levels
similar to control or WT cortactin, and were equivalent to
knockdown (sh) and TYM expressing cells (Fig. 6C–D). Finally,

we analyzed how cortactin DCM affects invadopodia formation
and extracellular matrix degradation, processes dependent on Src
and cortactin. Control (Ctl) OSC19 HNSCC cells spontaneously

Fig. 3. Cysteine-containing cortactin peptides dock within the Src SH2

phosphotyrosine binding region. (A) Molecular modelling of the Src SH2

domain with phosphorylated Src and cortactin pentapeptides. Enlarged views

show position of Src R175, Src C185 and the respective central Src or

cortactin peptide residues. (B) Calculated binding energies for each peptide

docking condition shown in (A).

Cystine bonding between Src and cortactin 6189
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form numerous invadopodia that focally degrade labeled gelatin

matrices. Invadopodia were completely absent in cortactin

knockdown (sh) cells (Fig. 6E) as previously shown (Artym

et al., 2006; Clark et al., 2007). Re-expression of WT cortactin

rescued the knockdown phenotype, restoring matrix degradation

to control levels. However, rescue of cortactin sh cells with

cortactin TYM resulted in the formation of invadopodia

structures with limited matrix degradation ability. These

structures are likely pre-invadopodia as previously described

(Kelley et al., 2010a; Oser et al., 2009). Rescue of cortactin sh

cells with cortactin DCM failed to restore invadopodia/pre-

invadopodia formation and gelatin degradation. These results

indicated that the genesis of pre-invadopodia requires initial

binding of Src to cortactin (Fig. 6E). The DCM protein correctly

localizes within lamellipodia (Fig. 6E), suggesting that the C112/

246A mutations do not deleteriously impact cortactin structure or

alter proper cortactin subcellular localization. C112/246A does

not significantly alter binding to F-actin as determined by F-actin

co-sedimentation assays (supplementary material Fig. S7B,C).

Collectively these data indicate that cystine-mediated Src binding

is required for Src phosphorylation of cortactin and regulation of

cellular events required for pro-motile and invasive activity.

Discussion
While SH2 domains have been shown to interact with ligands

through phosphorylation-dependent and -independent mechanisms,

binding to phosphotyrosine residues within target proteins is the

predominant mode of interaction, having been characterized at the

structural and thermodynamic levels for numerous ligand/domain

pairs (Pawson, 2004; Schlessinger and Lemmon, 2003). SH2

domains are present in proteins that mediate most cellular functions

and provide a wide combinatorial variety for selective intracellular

signal transfer (Liu et al., 2006). The identification of a cystine-

based, tyrosine phosphorylation-independent interaction between

the phosphotyrosine binding interface of the Src SH2 domain with

cortactin increases the potential ability for Src to interact with

substrate ligands in a previously unrealized manner, expanding the

repertoire and complexity of Src SH2 domain interactions in signal

transduction.

Evidence from our analysis of Src SH2 domain binding to

cortactin indicates that Src C185 forms a cystine bond with

C112 and/or C246 in the cortactin repeats region that is critical

for mediating cortactin binding, tyrosine phosphorylation,

and downstream cellular events. When bound to tyrosine

phosphorylated ligands, C185 lies in close proximity to the

Fig. 4. Binding and phosphorylation of cortactin by Src is

redox dependent and requires Src C185. (A) Co-

immunoprecipitation (IP) of cortactin with Src followed by

analysis under reducing (R) and non-reducing (NR) conditions.

Asterisks denote equivalent bands in cortactin and Src

immunoblots. (B) Co-immunoprecipitation of Src with

cortactin followed by analysis under reducing (R) and non-

reducing (NR) conditions. Asterisks denote equivalent bands

in cortactin and Src immunoblots. (C) Phosphorylation of

cortactin by Src in the absence and presence of DTT. (D) Far

western analysis of GST-Src SH2 and C185A. (E) Affinity

precipitation analysis of FAK and cortactin binding to GST-

Src SH2 C185A.
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phosphate group within the binding pocket, where the intrinsic

repulsive nature of the deprotonated C185 facilitates release of

pY527 from the SH2 domain, assisting in relieving the kinase

from the autoinhibited state (Bradshaw et al., 1999). Our data

provides an additional and alternative function for Src C185 in

docking to cortactin, where cystine bonding to C112 or C246

mediates association with activated Src. Structural studies

indicate cortactin exists as a partially globular protein, where

Fig. 5. Src C185 forms a cystine bond with cortactin C112 and C246. (A) Sequence of the predicted Src SH2 domain tryptic fragment containing C185.

Predicted cystine bonding between Src C185 and the cortactin C112 and C246 tryptic peptides with predicted masses are shown below. (B–D) Extracted ion

chromatogram (left) and ion fragmentation spectra (right) from tandem LC-MS/MS of the GST-Src SH2 domain (B), the GST-SH2 domain with the cortactin

C112 peptide (C) and the GST-SH2 domain with cortactin C246 peptide (D). Spectra were enlarged to indicate the position of the Src C185 b4 ion (boxed in red).

Cystine bonding between Src and cortactin 6191
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the repeats are in a paraordered molten globule state that is highly
dynamic in solution (Cowieson et al., 2008; Shvetsov et al.,

2009). Biophysical and biochemical analysis indicates that the
carboxyl terminus folds back onto the N-terminal region,
suggesting that the protein resides in a ‘‘closed’’ conformation
as supported by previously observed conformational isomers

(Campbell et al., 1999; Huang et al., 1997). C112 and C246 can
be crosslinked to each other, suggesting they are exposed and
either lie in close proximity or are dynamically brought together

(Cowieson et al., 2008; Shvetsov et al., 2009). The relatively
unstructured nature of the cortactin repeats therefore provides the
flexibility and accessibility of C112 and C246 to freely dock with

the Src SH2 domain, allowing cystine bonding to occur. The
nearness of the cortactin repeats region to the carboxyl terminal
target tyrosine residues would allow for SH2-directed Src binding
to the cortactin N-terminus, followed by subsequent processive

phosphorylation of Y421/466/482 within the P-rich domain
(Head et al., 2003). In conjunction with Erk1/2 phosphorylation
at S405/418 (Campbell et al., 1999; Kelley et al., 2010b),

cortactin is predicted to assume an open conformation, exposing
the phosphotyrosine residues for association with SH2 containing
adaptor proteins (Tehrani et al., 2007) or Abl-family kinases

(Lapetina et al., 2009) (Fig. 7A). The net effect of Src-based
phosphorylation would enhance actin dynamics through adaptor
protein interactions or by maintaining activation of SH2-bound

Abl or Arg, promoting phosphorylation of cortactin and
neighboring target proteins (Lapetina et al., 2009; Oser et al.,
2010). This model could be regulated by additional binding
interactions and modifications that involve the cortactin repeats

region. While mutation of the C112/246 Src docking sites does
not alter F-actin binding, other modifications to the cortactin
repeats region do modulate F-actin binding, including binding of

phosphatidylinositol 4,5-bisphosphate (He et al., 1998),
acetylation of the cortactin repeats (Zhang et al., 2007), and
phosphorylation of S113 in the first repeat by PAK (Webb et al.,

2006). Whether these events impact the association of Src with
cortactin remains to be determined.

Given the unprecedented nature of SH2 domains utilizing
cystine bonding for binding ligands, we conducted a phylogenetic

analysis of sequences containing cortactin C112/C246 and Src
C185 in species ranging from Homo sapiens to Suberites

domuncula (Fig. 7B). This analysis shows that the cortactin

cysteine 112 equivalent appears in accord with the equivalent Src
C185 residue in Danio rerio and is conserved throughout higher
species. Cortactin C246 first appears in Xenopus laevis and is

present in all higher organisms, collectively indicating co-
conservation of the Src and cortactin cysteines in vertebrates.

There is mounting evidence to date that oxidative-based cystine
and disulfide bonding occurs within and between multiple

different cytoplasmic proteins during conditions of cytoplasmic
oxidative stress as a mechanism that serves to regulate protein
functionality (Cumming, 2009; Cumming et al., 2004; Cumming

and Schubert, 2005). Src activity can be regulated by reactive
oxygen species (ROS) (Sun and Kemble, 2009), which have a
broad impact on multiple cellular processes that utilize oxidative

signaling (Giannoni et al., 2010). Specifically, ROS-induced
cysteine thiol oxidation of Src C245 in the SH2 domain and
C487 in the kinase domain has been proposed to sustain Src

activity by cystine bonding between these residues, maintaining
Src in an open conformation to promote kinase activity (Giannoni
et al., 2005). The proximity of Src C185 to cortactin C112/246
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docked within the SH2 phosphotyrosine binding cleft provides the

molecular setting that allows for a similar redox-mediated

oxidation and consequential cystine bonding between the two

proteins. Oxidative regulation of Src-cortactin binding is supported

by increased Src-based cortactin phosphorylation in cells treated

with hydrogen peroxide (Li et al., 2000). The requirement for

cortactin C112/246 in tumor cell motility, adhesion, and

invadopodia formation is in line with oxidative Src regulation

utilized in these processes (Giannoni et al., 2010; Weaver, 2009).

Furthermore, work in invadopodia has shown that localized ROS

production generated by the nicotinamide adenine dinucleotide

phosphate (NADPH) oxidase (Nox) system occurs through

association of the invadopodial protein Tks5 with the Nox

component p22phox (Diaz et al., 2009). Tks5 generated ROS

promotes invadopodia formation and generates a feed forward

loop through ROS-induced Src activity by suppression of the Src

inactivating phosphatase PTP-PEST (Diaz et al., 2009) and

potentially by sustaining cystine-based Src activity as described.

ROS production in invadopodia would therefore facilitate

oxidation of Src C185 and cortactin C112/246, promoting

cystine bonding and maintenance of the Src-cortactin complex at

sites of invadopodia formation. Since pre-invadopodia can form in

the absence of cortactin phosphorylation (Oser et al., 2009), we

speculate that the initial event for pre-invadopodia formation

involves oxidative-based cystine binding of Src to cortactin. Once

established, successive cycles of Src activity coupled with

dynamic cortactin phosphorylation/dephosphorylation promotes

establishment of SH2 protein-based actin regulatory complexes to

propagate actin filament production and ECM matrix degradation

(Kelley et al., 2010a; Oser et al., 2009). While recent work in MD-

MBA-231 cells suggests that Arg, and not Src, is responsible

for regulating cortactin phosphorylation during invadopodia

formation (Mader et al., 2011), our data in HNSCC cells

suggests that the tyrosine-independent binding event between

Src and cortactin is the essential trigger for pre-invadopodia

production. Determination of whether these differences are tumor

specific remains to be resolved.

Cystine formation between Src and cortactin must be transient

and reversible, since the Src SH2 domain does not stably interact

with cortactin as opposed to other phospho-tyrosine ligands

(Cobb et al., 1994; van Damme et al., 1997). Also, dynamic

cycling of Src kinase activity is required for invadopodia

Fig. 6. Cortactin C112 and 246 are essential for

phosphotyrosine-based cortactin function. (A) Analysis

of Src-mediated cortactin Y421 phosphorylation in

cortactin wild-type (WT) and double cysteine mutant

(DCM) proteins following reintroduction of Src into SYF

cells. Ratio indicates pY421 phosphorylation to total

cortactin levels. (B) Analysis of cortactin WT, triple

tyrosine mutant (TYM) and DCM tyrosine

phosphorylation in MTLn3 cells. Asterisks show the

position of the 80 kDa and 85 kDa cortactin forms.

(C) Quantitation of ECIS cell adhesion assays (n53) in

control (Ctl) and shRNA (sh) knockdown 1483 cells re-

expressing the indicated FLAG-cortactin constructs.

(D) Quantitation of ECIS cell migration assays (n53) in

control (Ctl) and shRNA (sh) knockdown 1483 cells re-

expressing the indicated FLAG-cortactin constructs. Bars

in (C,D) represent residual standard error from one-way

ANOVA without the intercept. ***, p#0.001. (E) OSC19

cells transfected with the indicated FLAG-cortactin

constructs were assayed for invadopodia formation and

matrix degradation (n550 cells from three independent

experiments). Bars represent residual standard error from

one-way ANOVA without the intercept. ***, p#0.001.

Arrows indicate invadopodia and regions of degraded

matrix. Scale bar520 mm.

Cystine bonding between Src and cortactin 6193
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maturation (Kelley et al., 2010b; Oser et al., 2009). Cytoplasmic

glutathione likely plays a part in providing the reductive

counterbalance to Tks5-generated ROS production, providing

the necessary redox balance to generate and reduce thiolate

anions at pH levels present in invadopodia (Cumming et al.,

2004; Magalhaes et al., 2011). Another possibility is that Src and

cortactin binding may be downregulated through the action of

thiol reductases, although the subcellular localization of these

enzymes has not been extensively evaluated.

Collectively our data indicates that the Src SH2

phosphotyrosine binding cleft is capable of phosphotyrosine

and cystine dependent and independent interactions. The dual

specificity of this SH2 subregion may be utilized to increase the

selectivity between different classes of Src substrates (Fig. 7C)

and may warrant reinvestigation of Src SH2-targeting compounds

designed to react with C185 as alternative therapeutic strategy to

the current class of kinase targeted Src inhibitors being evaluated

as anti-cancer therapeutics in clinical trials (Charifson et al.,

1997). Ablating C185 reactivity, while retaining phosphotyrosine

binding, would selectively impair the Src-cortactin axis without

impeding essential phosphorylation-based SH2 domain-ligand

interactions. This rationale may be warranted in HNSCC,

where Src activating epidermal growth factor receptor (EGFR)

and cortactin are frequently amplified and overexpressed,

corresponding with poor patient outcome (Ang et al., 2002;

Rodrigo et al., 2000).

Database analysis indicates that Src is the only SH2 domain-

containing cytoplasmic tyrosine kinase in its class that harbors a

cysteine residue within the SH2 domain (Fig. 7D). However,

there are thirty additional SH2 domains (25% of the total

known number) that contain cysteine residues within the

phosphotyrosine binding region in close proximity to the Src

Fig. 7. Model of cysteine-mediated

interactions in cortactin regulation.

(A) Model of cysteine-based cortactin

activation and phosphorylation by Src.

(B) Phylogenetic co-conservation of

cortactin C112/246 and Src C185. Conserved

cysteines are in red and the homologous

positions highlighted in yellow. (C) Cartoon

representation of Src SH2 binding to

phosphotyrosine and cysteine residues. Src

amino acids 172–191 within the SH2 domain

binding pocket are in white; interacting

arginine 175 and cysteine 185 residues are in

red. Cystine bonding is indicated as a red

line. Phosphotyrosine and cystine binding

ligands are listed. (D) Alignment of cysteine-

containing SH2 domains. Domains known to

bind ligands in a phosphotyrosine-

independent manner are in bold italics.

Cysteine residues are in red. Shading: green;

hydrophobic, blue; positively charged, red;

negatively charged, yellow; polar.

Journal of Cell Science 125 (24)6194
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bC3 (Fig. 7D). While untested, this indicates that SH2 domains

containing cysteine residues within this region may broadly

utilize cystine bonding to select ligands. This alternate SH2

signaling mode may be commonplace in conditions of high

intracellular ROS due to environmental stress (e.g.; heat, ionizing

radiation, ultraviolet light), as well as in hypoxic tumors.

Alternatively, cystine-based SH2 signaling may serve as a

‘‘backup’’ mode of preserving domain-ligand binding to ensure

that essential survival signals are mediated in conditions of low

ATP availability, where tyrosine kinase signaling might be

compromised (i.e.; Warburg effect). While future investigation is

required to examine these possibilities, our results demonstrating

cystine bonding between Src and cortactin represent a new

paradigm for SH2 domain function in mediating domain-based

signal transduction.

Materials and Methods
Cell culture

MTLn3 cells were maintained in alpha-minimal essential medium (a-MEM)
(Mediatech) with 10% FBS (Hyclone) in a 5% CO2 humidified atmosphere. SYF,
293T, 1483, and OSC19 cell lines were maintained in Dulbecco’s modified Eagles
medium (DMEM) (Mediatech) with 10% FBS.

Generation of plasmids

Cortactin truncation, Y421, and TYM mutants were previously described (Head
et al., 2003; Weed et al., 2000). Tandem repeat chimeric mutants were generated
by subcloning each individual repeat containing flanking BamH1 and Xho1
restriction sites with the Xho1/EcoR1 R6-CT fragment into BamH1/EcoR1
digested pcDNA3 FLAG-2AB. CFP-Src was produced by subcloning the Src
containing Xho1/BamH1 fragment from GFP-Src (a gift from Margaret Frame)
into pECFP-N1 (Clontech). FAK WT and Y397F were subcloned into FLAG-2AB
using BamH1 and EcoR1 restriction sites. Site-directed mutagenesis of cortactin
constructs was performed using the QuickChange IITM Site-directed mutagenesis
kit (Agilent Technologies) according to the manufacturer’s protocol.

Virus production and generation of stable cell lines

Stable knockdown of cortactin in 1483 and OSC19 cells was achieved by lentiviral
transduction using short hairpin lentiviral constructs from Open Biosystems
(1483: TRCN0000040275, OSC19: TRCN0000040275 and TRCN0000040273).
Complete cortactin knockdown in OSC19 cells was achieved by subsequent
transfection of cortactin-targeting siRNA (ON-TARGETplus SMARTpool catNO.
L-010508-00-0020, Dharmacon).

Confocal microscopy and gelatin degradation assay

Immunofluorescent labeling, confocal microscopy, preparation of fluorescently-
labeled gelatin coated coverslips, and ECM degradation assays were conducted as
previously described (Ammer et al., 2009).

Peptide synthesis and SH2 domain array screening

Peptides were synthesized by Macromolecular Resources at Colorado State
University. Screening of TransignalTM SH2 Domain Arrays (Panomics Cat. NO.
MA3040) was conducted using 1.0 mg of each cortactin peptide according to the
manufacturer’s protocol.

Fusion protein purification

Purification of recombinant proteins were performed as described previously
(Okamura and Resh, 1995).

Cell transfection, western blotting, and immunoprecipitation

Plasmid transfection, western blotting, and immunoprecipitation were performed
as described (Rothschild et al., 2006).

Far western assays

Initially, cells transfected with FLAG-tagged cortactin plasmids were lysed and
immunoprecipitated using EZ-View anti-FLAG resin (Invitrogen). Immune
complexes were separated by SDS-PAGE, transferred to nitrocellulose
membranes and proteins renatured in TBS-Tween containing 5% nonfat milk.
Far western binding with Src SH2 domain constructs was conducted essentially as
described (Shin et al., 2004), except 2 h incubations with 50–200 mg of fusion
protein were used. In reduction experiments (Fig. 4D), 1 mM DTT was added to
the incubation solution containing the GST-Src SH2 domain.

Affinity precipitation

SH2 domain precipitations were conducted as described (Okamura and Resh,
1995), except 100–200 mg of recombinant fusion protein and 1.0–1.5 mg of cell
lysate were used for each assay.

Electric cell-substrate impedance sensing (ECIS)

ECIS was performed as described (Rothschild et al., 2006).

F-actin cosedimentation assay

F-actin cosedimentation assays were performed as described (Weed et al., 2000).

Statistical analysis

For standard errors (d-SE), variances were pooled using residual standard error
from one-way ANOVA without the intercept. Delta-method approximation was
used for all confidence bands (Fig. 6). Transformations performed in ANOVA
used standard statistical model evaluation tools.

Molecular modeling

Docking studies were performed using the program eHiTS (SymBioSys Toronto,
CA). Prior to docking, the hydrogens were added to the crystal structure PDBID:
1FMK (Xu et al., 1997) of the Src SH2 domain, solvated, and ions to neutralize the
charge were added. The entire structure was then relaxed by running molecular
dynamics (300 ps) using Amber (ver. 10) (Case et al., 2005). The cortactin peptides
were built de novo in an extended conformation using Insight II (Accelrys, San
Diego, CA) and each allowed to relax through 2500 steps of steepest descent
molecular mechanics. The resulting structures were then docked. To obtain binding
energies, molecular dynamics simulations were performed for 300 ps for: 1) each
cortactin peptide in complex with the Src SH2 receptor, with docking results used as
the starting structure; 2) the Src SH2 receptor alone and 3) each cortactin ligand
alone. The resulting average potential energies calculated from the molecular
dynamics simulation were then used to calculate the binding energy for each
cortactin ligand to the SH2 receptor as the energy of the complex minus the energy
of the Src SH2 receptor alone minus the energy of the cortactin ligand alone.
Parameters for the phosphotyrosine were used (Homeyer et al., 2006).

Mass spectrometry

Purified GST-Src SH2 domain was incubated alone or mixed with a 10-fold molar
excess of cortactin C112 peptide (SKHCSQV) or C246 peptide (QDKCALG)
(Anaspec) in TBS (pH 7.2) for 2 h at room temperature. GST-Src SH2 samples
(40 mg) were subsequently digested with trypsin (Promega) at a 1:50 (wt/wt) ratio in
1 mM Tris, 150 mM NaCl (TBS), pH 7.2 overnight at 37 C̊. Digested samples were
frozen at 280 C̊ and lyophilized to remove solvents. Tryptic peptides were separated
using an Acquity UPLCH System (Waters). Samples were separated using a reverse-
phase Acquity BEH C18 1.7 mm, 1.0650 mm column (Waters) directly coupled to a
Waters SynaptH G2 HDMS mass spectrometer. Data were acquired using time of
flight (TOF) MSE mode, which provides a comprehensive catalog of information for
both precursor and fragment ions in a single analysis. A customized database was
created using the GST-Src SH2 sequence, and the resulting precursor masses and
MS/MS spectra were searched against the database using Biopharmalynx 3.1
(Waters). To evaluate cortactin C112 and C246 peptide binding to the Src SH2
domain, custom post-translational modifications were specified in Biopharmalynx
based on monoisotopic masses for the C112 and C246 peptides binding at
cysteine residues to Src C185 through disulfide bond formation. Extracted ion
chromatograms (XIC) were obtained using MassLynx 2.2 (Waters).

Accession numbers for phylogenetic sequence analysis

Respective GenBank accession numbers for cortactin and Src are as follows: Homo
sapiens AAH08799.1, NP_005408.1; Canis familiaris XP_851317.1, XP_865870.1;
Mus musculus AAA19689.1, AAX90616.1; Gallus gallus Q01406.1, NP_990788.2;
Xenopus laevis BAB79435.1, AAH45134.1; Danio rerio NP_001004121.1,
AAI65380.1; Tetraodon nigroviridis CAF92908.1, CAG10364.1; Drosophila
melanogaster NP_524426.2, NP_001189051.1; Anopheles gambiae XP_557457.3,
XP_316537.2; Loa loa XP_003142854.1, EFO14749.1; Strongylocentrotus

purpuratus AAD08655.1, ACI14304.1; Suberites domuncula CAC80140.1,
AAT67598.1.

SH2 domain alignments

Twenty amino acids within the phosphotyrosine binding pocket of the Src SH2
domain beginning with the FLVRES sequence were aligned relative to Src C185,
which was used as the zero residue reference point. SH2 domain sequence data
were obtained from the University of Chicago Nash Laboratory SH2 domain
database (http://sh2.uchicago.edu/clustalalignment.html).

Antibodies

Antibodies for immunoblotting were as follows: anti-cortactin (4F11), 1:1000;
anti-pY421 cortactin (Invitrogen), 1:1000; anti-FLAG and anti-GST (Millipore),
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1:1000; anti-GFP (JL8; Clontech), 1:1000; anti-phosphotyrosine (BD
Transduction), 1:1000. Antibodies for immunofluorescent labeling were used as
described (Ammer et al., 2009).
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