93 research outputs found

    Towards understanding of fungal biocontrol mechanisms of different yeasts antagonistic to Botrytis cinerea through exometabolomic analysis

    Get PDF
    There is increased interest in research on yeasts as potential phytopathogen biocontrol agents due to increasing restrictions in the use of chemical pesticides. Yeast strains from a range of genera and species have been reported to inhibit postharvest decay in different fruits. However, the mechanisms behind these yeast biocontrol capacities have not been completely deciphered because they are complex and act synergistically. In this study, we performed a thorough untargeted analysis of the exometabolome generated in a co-culture of the fungal plant pathogen Botrytis cinerea with four antagonistic yeast strains: Pichia fermentans (two strains), Issatchenkia terricola and Wickerhamomyces anomalus. As a result, general and strain-specific antifungal mechanisms and molecules were identified. The P. fermentans strains secreted the highest number of differential metabolites to the extracellular medium when co-cultured with B. cinerea. In vitro antagonistic and in vivo pathogen protection assays were performed with the selected metabolites. Among a plethora of 46 differentially secreted metabolites related to yeast-fungus competitive interaction, the phenylpropanoid trans-cinnamic acid and the alkaloid indole-3-carboxaldehyde were identified as the best antagonistic metabolites against gray mold infection under in vivo protection assays. Both metabolites caused damage to the fungal membrane and increased ROS generation in spores of B. cinerea. In addition, enhanced yeast secretion to the extracellular medium of oxylipins, dipeptides, alkaloids or antibiotics deserve to be further investigated as signaling or antagonistic molecules. This study opens the door to future investigations of roles of these molecules in yeast metabolism and application of this knowledge for biotechnological purposes.This work was financed by the Departamento de Desarrollo Económico y Empresarial from the Gobierno de Navarra (Spain): grants 0011-1365-2021-000079 and 0011-1411-2019-000009. Open Access funding provided by Universidad Pública de Navarra

    Identification of new antifungal metabolites produced by the yeast Metschnikowia pulcherrima involved in the biocontrol of postharvest plant pathogenic fungi

    Get PDF
    Several strains of the yeast Metschnikowia pulcherrima exhibit strong antagonistic activity against postharvest pathogens and may have broad biotechnological potential as biocontrol agents. However, the nature and interplay of the mechanisms contributing to this antifungal activity are still largely unknown. This study characterizes the antifungal compounds present in the exometabolome of two yeast strains that previously showed an efficient inhibition of Botrytis cinerea infection. We show that a yeast-fungus co-culture assay is a good system to examine the antagonistic interaction and elucidate the nature of the produced yeast metabolites. As a result, our UPLC-MS/MS analysis identified a total of 35 differentially secreted metabolites, potentially involved in the biocontrol of gray mold. Subsequent in vitro analysis and in vivo tomato, grape and apple fruit protection assays with such metabolites allowed us to identify several new antifungal compounds, with 3-amino-5-methylhexanoic acid, biphenyl-2,3-diol and sinapaldehyde being the most active (with up to 90–100% reduction in the infection of tomato and apple with B. cinerea). In addition, the first two metabolites protected tomatoes against Alternaria alternata infection. It was observed that these metabolites negatively affected the cell membrane integrity and mycelial morphology of B. cinerea and increased the intracellular level of ROS. Furthermore, other unexpected metabolites with interesting biotechnological applications were identified for the first time as being secreted by yeast cells, such as piperideine and protoemetine (alkaloids), p-coumaroyl quinic acid (phenylpropanoid), β-rhodomycin (antibiotic), hexadecanedioic acid (long chain fatty acid) or taurocholic acid (bile acid). This fact highlights that the antifungal activity of M. pulcherrima may result from synergistic action of several active molecules

    Roots drive oligogalacturonide-induced systemic immunity intomato

    Get PDF
    Oligogalacturonides (OGs) are fragments of pectin released from the plant cell wall during insect or pathogen attack. They can be perceived by the plant as damage signals, triggering local and systemic defence responses. Here, we analyse the dynamics of local and systemic responses to OG perception in tomato roots or shoots, exploring their impact across the plant and their relevance in pathogen resistance. Targeted and untargeted metabolomics and gene expression analysis in plants treated with purified OGs revealed that local responses were transient, while distal responses were stronger and more sustained. Remarkably, changes were more conspicuous in roots, even upon foliar application of the OGs. The treatments differentially activated the synthesis of defencerelated hormones and secondary metabolites including flavonoids, alkaloids and lignans, some of them exclusively synthetized in roots. Finally, the biological relevance of the systemic defence responses activated upon OG perception was confirmed, as the treatment induced systemic resistance to Botrytis cinerea. Overall, this study shows the differential regulation of tomato defences upon OGs perception in roots and shoots and reveals the key role of roots in the coordination of the plant responses to damage sensing

    Excitotoxic inactivation of constitutive oxidative stress detoxification pathway in neurons can be rescued by PKD1

    Get PDF
    Excitotoxicity, a critical process in neurodegeneration, induces oxidative stress and neuronal death through mechanisms largely unknown. Since oxidative stress activates protein kinase D1 (PKD1) in tumor cells, we investigated the effect of excitotoxicity on neuronal PKD1 activity. Unexpectedly, we find that excitotoxicity provokes an early inactivation of PKD1 through a dephosphorylation-dependent mechanism mediated by protein phosphatase-1 (PP1) and dual specificity phosphatase-1 (DUSP1). This step turns off the IKK/NF-κB/SOD2 antioxidant pathway. Neuronal PKD1 inactivation by pharmacological inhibition or lentiviral silencing in vitro, or by genetic inactivation in neurons in vivo, strongly enhances excitotoxic neuronal death. In contrast, expression of an active dephosphorylation-resistant PKD1 mutant potentiates the IKK/NF-κB/SOD2 oxidative stress detoxification pathway and confers neuroprotection from in vitro and in vivo excitotoxicity. Our results indicate that PKD1 inactivation underlies excitotoxicity-induced neuronal death and suggest that PKD1 inactivation may be critical for the accumulation of oxidation-induced neuronal damage during aging and in neurodegenerative disorders

    Depletion of abscisic acid levels in roots of flooded Carrizo citrange (Poncirus trifoliata L. Raf. x Citrus sinensis L. Osb.) plants is a stress-specific response associated to the differential expression of PYR/PYL/RCAR receptors

    Get PDF
    [EN] Soil flooding reduces root abscisic acid (ABA) levels in citrus, conversely to what happens under drought. Despite this reduction, microarray analyses suggested the existence of a residual ABA signaling in roots of flooded Carrizo citrange seedlings. The comparison of ABA metabolism and signaling in roots of flooded and water stressed plants of Carrizo citrange revealed that the hormone depletion was linked to the upregulation of CsAOG, involved in ABA glycosyl ester (ABAGE) synthesis, and to a moderate induction of catabolism (CsCYP707A, an ABA 8'-hydroxylase) and buildup of dehydrophaseic acid (DPA). Drought strongly induced both ABA biosynthesis and catabolism (CsNCED1, 9-cis-neoxanthin epoxycarotenoid dioxygenase 1, and CsCYP707A) rendering a significant hormone accumulation. In roots of flooded plants, restoration of control ABA levels after stress release was associated to the upregulation of CsBGLU18 (an ABA beta-glycosidase) that cleaves ABAGE. Transcriptional profile of ABA receptor genes revealed a different induction in response to soil flooding (CsPYL5) or drought (CsPYL8). These two receptor genes along with CsPYL1 were cloned and expressed in a heterologous system. Recombinant CsPYL5 inhibited Delta NHAB1 activity in vitro at lower ABA concentrations than CsPYL8 or CsPYL1, suggesting its better performance under soil flooding conditions. Both stress conditions induced ABA-responsive genes CsABI5 and CsDREB2A similarly, suggesting the occurrence of ABA signaling in roots of flooded citrus seedlings. The impact of reduced ABA levels in flooded roots on CsPYL5 expression along with its higher hormone affinity reinforce the role of this ABA receptor under soil-flooding conditions and explain the expression of certain ABA-responsive genes.This work was supported by Ministerio de Economia y Competitividad (MINECO), Fondo Europeo de Desarrollo Regional (FEDER) and Universitat Jaume I through grants No. AGL201676574-R, UJI-B2016-23/UJI-B2016-24 to A.G-C. and V.A. and MINECO, FEDER and Consejo Superior de Investigaciones Cientificas (CSIC) through grant BIO2014-52537-R to P.L.R. S.I.Z. and M.M. were supported by predoctoral grants from Universitat Jaume I and Generalitat Valenciana, respectively. M.G.G. was recipient of a "JAE-DOC" contract from the CSIC. Mass spectrometry analyses were performed at the central facilities (Servei Central d'Instrumentacio Cientifica, SCIC) of Universitat Jaume I.Arbona, V.; Zandalinas, SI.; Manzi, M.; González Guzmán, M.; Rodríguez Egea, PL.; Gómez-Cadenas, A. (2017). Depletion of abscisic acid levels in roots of flooded Carrizo citrange (Poncirus trifoliata L. Raf. x Citrus sinensis L. Osb.) plants is a stress-specific response associated to the differential expression of PYR/PYL/RCAR receptors. Plant Molecular Biology. 93(6):623-640. https://doi.org/10.1007/s11103-017-0587-7S623640936Agarwal PK, Jha B (2010) Transcription factors in plants and ABA dependent and independent abiotic stress signalling. Biol Plant 54:201–212Agustí J, Merelo P, Cercós M, Tadeo FR, Talón M (2008) Ethylene-induced differential gene expression during abscission of citrus leaves. J Exp Bot 59:2717–2733. doi: 10.1093/jxb/ern138Antoni R, Gonzalez-Guzman M, Rodriguez L, Rodrigues A, Pizzio G, Rodriguez PL (2012) Selective inhibition of clade a phosphatases type 2 C by PYR/PYL/RCAR abscisic acid receptors. Plant Physiol 158:970–980. doi: 10.1104/pp.111.188623Antoni R, Gonzalez-Guzman M, Rodriguez L, Peirats-Llobet M, Pizzio G, Fernandez M, De Winne N, De Jaeger G, Dietrich D, Bennett MJ, Rodriguez PL (2013) PYRABACTIN RESISTANCE1-LIKE8 plays an important role for the regulation of abscisic acid signaling in root. Plant Physiol 161:491–931. doi: 10.1104/pp.112.208678Arbona V, Gómez-Cadenas A (2008) Hormonal modulation of citrus responses to flooding. J Plant Growth Regul 27:241–250. doi: 10.1007/s00344-008-9051-xArbona V, López-climent MF, Pérez-Clemente RM, Gómez-cadenas A (2009) Maintenance of a high photosynthetic performance is linked to flooding tolerance in citrus. Environ Exp Bot 66:135–142. doi: 10.1016/j.envexpbot.2008.12.011Argamasilla R, Gómez-Cadenas A, Arbona V (2013) Metabolic and regulatory responses in citrus rootstocks in response to adverse environmental conditions. J Plant Growth Regul 33:169–180. doi: 10.1007/s00344-013-9359-zBaron KN, Schroeder DF, Stasolla C (2012) Transcriptional response of abscisic acid (ABA) metabolism and transport to cold and heat stress applied at the reproductive stage of development in Arabidopsis thaliana. Plant Sci 188–189:48–59. doi: 10.1016/j.plantsci.2012.03.001Benschop JJ, Millenaar FF, Smeets ME, Van Zanten M, Voesenek LACJ, Peeters AJM (2007) Abscisic acid antagonizes ethylene-induced hyponastic growth in Arabidopsis. Plant Physiol 143:1013–1023Chen R, Jiang H, Li L, Zhai Q, Qi L, Zhou W, Liu X, Li H, Zheng W, Sun J, Li C (2012) The Arabidopsis mediator subunit MED25 differentially regulates jasmonate and abscisic acid signaling through interacting with the MYC2 and ABI5 transcription factors. Plant Cell 24:2898–2916. doi: 10.1105/tpc.112.098277De Ollas C, Hernando B, Arbona V, Gómez-Cadenas A (2013) Jasmonic acid transient accumulation is needed for abscisic acid increase in citrus roots under drought stress conditions. Physiol Plant 147:296–306. doi: 10.1111/j.1399-3054.2012.01659.xDupeux F, Santiago J, Betz K, Twycross J, Park S-Y, Rodriguez L, Gonzalez-Guzman M, Jensen MR, Krasnogor N, Blackledge M, Holdsworth M, Cutler SR, Rodriguez PL, Márquez JA (2011) A thermodynamic switch modulates abscisic acid receptor sensitivity. EMBO J 30:4171–4184. doi: 10.1038/emboj.2011.294Finkelstein RR, Rock CD (2002) Abscisic Acid biosynthesis and response. Arabidopsis Book 1:e0058. doi: 10.1199/tab.0058Fuchs S, Tischer SV, Wunschel C, Christmann A, Grill E (2014) Abscisic acid sensor RCAR7/PYL13, specific regulator of protein phosphatase coreceptors. Proc Natl Acad Sci U S A 111:5741–5746. doi: 10.1073/pnas.1322085111Fukao T, Yeung E, Bailey-Serres J (2011) The submergence tolerance regulator SUB1A mediates crosstalk between submergence and drought tolerance in rice. Plant Cell 23:412–427. doi: 10.1105/tpc.110.080325Gonzalez-Guzman M, Rodriguez L, Lorenzo-Orts L, Pons C, Sarrion-Perdigones A, Fernandez M a, Peirats-Llobet M, Forment J, Moreno-Alvero M, Cutler SR, Albert A, Granell A, Rodriguez PL (2014) Tomato PYR/PYL/RCAR abscisic acid receptors show high expression in root, differential sensitivity to the abscisic acid agonist quinabactin, and the capability to enhance plant drought resistance. J Exp Bot 65:1–14. doi: 10.1093/jxb/eru219González-Guzmán M, Apostolova N, Bellés JM, Barrero JM, Piqueras P, Ponce MR, Micol JL, Serrano R, Rodríguez PL (2002) The short-chain alcohol dehydrogenase ABA2 catalyzes the conversion of xanthoxin to abscisic aldehyde. Plant Cell 14:1833–1846. doi: 10.1105/tpc.002477.developmentHsu F-C, Chou M-Y, Peng H-P, Chou S-J, Shih M-C (2011) Insights into hypoxic systemic responses based on analyses of transcriptional regulation in Arabidopsis. PLoS ONE 6:e28888. doi: 10.1371/journal.pone.0028888Krochko JE, Abrams GD, Loewen MK, Abrams SR, Cutler AJ (1998) (+)-Abscisic Acid 8-hydroxylase is a cytochrome P450 monooxygenase. Plant Physiol 860:849–860. doi: 10.1104/pp.118.3.849Lawlor DW (2013) Genetic engineering to improve plant performance under drought: physiological evaluation of achievements, limitations, and possibilities. J Exp Bot 64:83–108. doi: 10.1093/jxb/ers326Lee SC, Luan S (2012) ABA signal transduction at the crossroad of biotic and abiotic stress responses. Plant Cell Environ 35:53–60. doi: 10.1111/j.1365-3040.2011.02426.xLiu Q, Kasuga M, Sakuma Y, Abe H, Miura S, Yamaguchi-Shinozaki K, Shinozaki K (1998) Two transcription factors, DREB1 and DREB2, with an EREBP/AP2 DNA binding domain separate two cellular signal transduction pathways in drought- and low-temperature-responsive gene expression, respectively, in Arabidopsis. Plant Cell 10:1391–1406Mittal A, Gampala SSL, Ritchie GL, Payton P, Burke JJ, Rock CD (2014) Related to ABA-Insensitive3(ABI3)/Viviparous1 and AtABI5 transcription factor coexpression in cotton enhances drought stress adaptation. Plant Biotechnol J 12:578–589. doi: 10.1111/pbi.12162Naika M, Shameer K, Mathew OK, Gowda R, Sowdhamini R (2013) STIFDB2: an updated version of plant stress-responsive transcription factor database with additional stress signals, stress-responsive transcription factor binding sites and stress-responsive genes in Arabidopsis and rice. Plant Cell Physiol 54:e8. doi: 10.1093/pcp/pcs185Nambara E, Marion-Poll A (2005) Abscisic acid biosynthesis and catabolism. Annu Rev Plant Biol 56:165–185. doi: 10.1146/annurev.arplant.56.032604.144046Narusaka Y, Nakashima K, Shinwari ZK, Sakuma Y, Furihata T, Abe H, Narusaka M, Shinozaki K, Yamaguchi-Shinozaki K (2003) Interaction between two cis-acting elements, ABRE and DRE, in ABA-dependent expression of Arabidopsis rd29A gene in response to dehydration and high-salinity stresses. Plant J 34:137–148Okamoto M, Kuwahara A, Seo M, Kushiro T, Asami T, Hirai N (2006) CYP707A1 and CYP707A2, which encode abscisic acid 8′-hydroxylases, are indispensable for proper control of seed dormancy and germination in Arabidopsis. Plant Physiol 141:97–107. doi: 10.1104/pp.106.079475.1Okamoto M, Peterson FC, Defries A, Park S-Y, Endo A, Nambara E, Volkman BF, Cutler SR (2013) Activation of dimeric ABA receptors elicits guard cell closure, ABA-regulated gene expression, and drought tolerance. Proc Natl Acad Sci USA 110:12132–12137. doi: 10.1073/pnas.1305919110Priest DM, Ambrose SJ, Vaistij FE, Elias L, Higgins GS, Ross ARS, Abrams SR, Bowles DJ (2006) Use of the glucosyltransferase UGT71B6 to disturb abscisic acid homeostasis in Arabidopsis thaliana. Plant J 46:492–502. doi: 10.1111/j.1365-313X.2006.02701.xRitchie M, Phipson B, Wu D, Hu Y, Law C, Shi W, Smyth G (2015) Limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res 43:e47Rodríguez-Gamir J, Ancillo G, González-Mas MC, Primo-Millo E, Iglesias DJ, Forner-Giner MA (2011) Root signalling and modulation of stomatal closure in flooded citrus seedlings. Plant Physiol Biochem 49:636–645. doi: 10.1016/j.plaphy.2011.03.003Romero P, Lafuente MT, Rodrigo MJ (2012a) The Citrus ABA signalosome: identification and transcriptional regulation during sweet orange fruit ripening and leaf dehydration. J Exp Bot 63:4931–4945Romero P, Rodrigo MJ, Alférez F, Ballester A-R, González-Candelas L, Zacarías L, Lafuente MT (2012b) Unravelling molecular responses to moderate dehydration in harvested fruit of sweet orange (Citrus sinensis L. Osbeck) using a fruit-specific ABA-deficient mutant. J Exp Bot 63:2753–2767. doi: 10.1093/jxb/err461Saika H, Okamoto M, Miyoshi K, Kushiro T, Shinoda S, Jikumaru Y, Fujimoto M, Arikawa T, Takahashi H, Ando M, Arimura S-I, Miyao A, Hirochika H, Kamiya Y, Tsutsumi N, Nambara E, Nakazono M (2007) Ethylene promotes submergence-induced expression of OsABA8ox1, a gene that encodes ABA 8′-hydroxylase in rice. Plant Cell Physiol 48:287–298. doi: 10.1093/pcp/pcm003Santiago J, Dupeux F, Betz K, Antoni R, Gonzalez-Guzman M, Rodriguez L, Márquez JA, Rodriguez PL (2012) Structural insights into PYR/PYL/RCAR ABA receptors and PP2Cs. Plant Sci 182:3–11. doi: 10.1016/j.plantsci.2010.11.014Schroeder JI, Nambara E (2006) A quick release mechanism for abscisic acid. Cell 126:1023–1025. doi: 10.1016/j.cell.2006.09.001Seiler C, Harshavardhan VT, Rajesh K, Reddy PS, Strickert M, Rolletschek H, Scholz U, Wobus U, Sreenivasulu N (2011) ABA biosynthesis and degradation contributing to ABA homeostasis during barley seed development under control and terminal drought-stress conditions. J Exp Bot 62:2615–2632. doi: 10.1093/jxb/erq446Shimamura S, Yoshioka T, Yamamoto R, Hiraga S, Nakamura T, Shimada S, Komatsu S (2014) Role of abscisic acid in flood-induced secondary aerenchyma formation in soybean (Glycine max) hypocotyls. Plant Prod Sci 17:131–137. doi: 10.1626/pps.17.131Szostkiewicz I, Richter K, Kepka M, Demmel S, Ma Y, Korte A, Assaad FF, Christmann A, Grill E (2010) Closely related receptor complexes differ in their ABA selectivity and sensitivity. Plant J 61:25–35. doi: 10.1111/j.1365-313X.2009.04025.xTanaka H, Osakabe Y, Katsura S, Mizuno S, Maruyama K, Kusakabe K, Mizoi J, Shinozaki K, Yamaguchi-Shinozaki K (2012) Abiotic stress-inducible receptor-like kinases negatively control ABA signaling in Arabidopsis. Plant J 70:599–613. doi: 10.1111/j.1365-313X.2012.04901.xValdés AE, Övernäs E, Johansson H, Rada-Iglesias A, Engström P (2012) The homeodomain-leucine zipper (HD-Zip) class I transcription factors ATHB7 and ATHB12 modulate abscisic acid signalling by regulating protein phosphatase 2C and abscisic acid receptor gene activities. Plant Mol Biol 80:405–418. doi: 10.1007/s11103-012-9956-4Weng J-K, Ye M, Noel JP (2016) Co-evolution of hormone metabolism and signaling networks expands plant adaptive plasticity. Cell 166:881–893Yamaguchi M, Sharp RE (2010) Complexity and coordination of root growth at low water potentials: recent advances from transcriptomic and proteomic analyses. Plant Cell Environ 33:590–603. doi: 10.1111/j.1365-3040.2009.02064.xYoshida T, Mogami J, Yamaguchi-Shinozaki K (2014) ABA-dependent and ABA-independent signaling in response to osmotic stress in plants. Curr Opin Plant Biol 21C:133–139. doi: 10.1016/j.pbi.2014.07.009Zhao Y, Xing L, Wang X, Hou Y-H, Gao J, Wang P, Duan C-G, Zhu X, Zhu J-K (2014) The ABA receptor PYL8 promotes lateral root growth by enhancing MYB77-dependent transcription of auxin-responsive genes. Sci Signal 7:ra53Zou M, Guan Y, Ren H, Zhang F, Chen F (2008) A bZIP transcription factor, OsABI5, is involved in rice fertility and stress tolerance. Plant Mol Biol 66:675–683. doi: 10.1007/s11103-008-9298-

    Performance of current guidelines for diagnosis of macrophage activation syndrome complicating systemic juvenile idiopathic arthritis

    Get PDF
    Publisher Copyright: Copyright © 2014 by the American College of Rheumatology.Results The study sample included 362 patients with systemic JIA and MAS, 404 patients with active systemic JIA without MAS, and 345 patients with systemic infection. The best capacity to differentiate MAS from systemic JIA without MAS was found when the preliminary MAS guidelines were applied. The 3/5-adapted HLH-2004 guidelines performed better than the 4/5-adapted guidelines in distinguishing MAS from active systemic JIA without MAS. The 3/5-adapted HLH-2004 guidelines and the preliminary MAS guidelines with the addition of ferritin levels ≥500 ng/ml discriminated best between MAS and systemic infections. Conclusion The preliminary MAS guidelines showed the strongest ability to identify MAS in systemic JIA. The addition of hyperferritinemia enhanced their capacity to differentiate MAS from systemic infections. The HLH-2004 guidelines are likely not appropriate for identification of MAS in children with systemic JIA. Objective To compare the capacity of the 2004 diagnostic guidelines for hemophagocytic lymphohistiocytosis (HLH-2004) with the capacity of the preliminary diagnostic guidelines for systemic juvenile idiopathic arthritis (JIA)-associated macrophage activation syndrome (MAS) to discriminate MAS complicating systemic JIA from 2 potentially confusable conditions, represented by active systemic JIA without MAS and systemic infection. Methods International pediatric rheumatologists and hemato-oncologists were asked to retrospectively collect clinical information from patients with systemic JIA-associated MAS and confusable conditions. The ability of the guidelines to differentiate MAS from the control diseases was evaluated by calculating the sensitivity and specificity of each set of guidelines and the kappa statistics for concordance with the physician's diagnosis. Owing to the fact that not all patients were assessed for hemophagocytosis on bone marrow aspirates and given the lack of data on natural killer cell activity and soluble CD25 levels, the HLH-2004 guidelines were adapted to enable the diagnosis of MAS when 3 of 5 of the remaining items (3/5-adapted) or 4 of 5 of the remaining items (4/5-adapted) were present.publishersversionPeer reviewe

    A PURELY METRIC PROOF OF THE CARISTI FIXED POINT THEOREM

    No full text
    corecore