8 research outputs found

    Setting the optimal sheet thickness distribution for plastics thermoforming by multi-objective optimization

    Get PDF
    Thermoforming is a thermoplastic processing technique commonly used in the rigid packaging industry. The process comprises a heating stage, which aims at allowing the sheet to acquire the required deformability, a deformation stage, in which the sheets conform to the mould surface, and, finally, a cooling stage, which allows the part to be extracted from the mould without distorting. Since there are several processing variables associated with those stages, optimizing the thermoforming process is a complex task. In this work, a multi-objective optimization evolutionary algorithm is proposed to optimize the plastics thermoforming process. For that purpose, the thickness distribution of the final part was optimized considering that it is manufactured from uniform temperature sheets with different thickness distributions, such as constant and spline and concentric profiles. The aims were to minimize the sheet volume, as it implies less material use; assure a minimum value for the part thickness distribution, to avoid hindering its mechanical behavior; and minimize the thickness heterogeneity, i.e., the difference between the thickness of the part and a reference thickness. The Pareto optimal solutions found by the algorithm correspond to different thickness profiles for the three different sheet shapes. In all cases, an improvement of the different profiles along the successive generations of the evolutionary algorithm was obtained, which are related to the objectives considered. Moreover, the initial sheet thickness distribution was found to clearly influence the optimization process. The results obtained for these three different initial sheet shapes indicate that the proposed methodology is valid, providing solutions with physical meaning and with great potential to be applied in more complex cases

    New boundary conditions for simulating the filling stage of the injection molding process

    Get PDF
    Purpose The purpose of this paper is to develop new boundary conditions for simulating the injection molding process of polymer melts. Design/methodology/approach The boundary conditions are derived and implemented to simulate real-life air vents (used to allow the air escape from the mold). The simulations are performed in the computational libraryOpenFOAM (R) by considering two different fluid models, namely, Newtonian and generalized Newtonian (Bird-Carreau model). Findings A detailed study on the accuracy of the solverinterFoamfor simulating the filling stage is presented, by considering simple geometries and adaptive mesh refinement. The verified code is then used to study the three-dimensional filling of a more complex geometry. Originality/value The results obtained showed that the numerical method is stable and allows one to model the filling process, simulating the real injection molding process.This work is funded by FEDER funds through the COMPETE 2020 Programme and National Funds through FCT (Portuguese Foundation for Science and Technology) under the projects UID-B/05256/2020, UID-P/05256/2020 and MOLDPRO-Aproximacoes multi-escala para moldacao por injecao de materiais plasticos (POCI-01-0145-FEDER-016665).The research of L.L. Ferras was partially financed by the Portuguese Funds through FCT within the Projects UID-B/00013/2020, UID-P/00013/2020 and the scholarship SFRH/BPD/100353/2014.The authors would like to acknowledge the Minho University Cluster (NORTE-07-0162-FEDER-000086) for providing the HPC resources that contributed to the research results reported within this paper

    Multi-objective optimization of plastics thermoforming

    Get PDF
    The practical application of a multi-objective optimization strategy based on evolutionary algorithms was proposed to optimize the plastics thermoforming process. For that purpose, in this work, differently from the other works proposed in the literature, the shaping step was considered individually with the aim of optimizing the thickness distribution of the final part originated from sheets characterized by different thickness profiles, such as constant thickness, spline thickness variation in one direction and concentric thickness variation in two directions, while maintaining the temperature constant. As far we know, this is the first work where such a type of approach is proposed. A multi-objective optimization strategy based on Evolutionary Algorithms was applied to the determination of the final part thickness distribution with the aim of demonstrating the validity of the methodology proposed. The results obtained considering three different theoretical initial sheet shapes indicate clearly that the methodology proposed is valid, as it provides solutions with physical meaning and with great potential to be applied in real practice. The different thickness profiles obtained for the optimal Pareto solutions show, in all cases, that that the different profiles along the front are related to the objectives considered. Also, there is a clear improvement in the successive generations of the evolutionary algorithm.This research was funded by NAWA-Narodowa Agencja Wymiany Akademickiej, under grant PPN/ULM/2020/1/00125 and European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie Grant Agreement No 734205–H2020-MSCA-RISE2016. The authors also acknowledge the funding by FEDER funds through the COMPETE 2020 Programme and National Funds through FCT (Portuguese Foundation for Science and Technology) under the projects UID-B/05256/2020, UID-P/05256/2020, UIDB/00319/2020, MORPHING.TECH— Direct digital Manufacturing of automatic programmable and Continuously adaptable patterned surfaces with a discrete and patronized composition (POCI-01-0247-FEDER-033408)

    Nitric oxide chemistry effects in hypersonic boundary layers

    No full text
    Simulations of gas seeding into a hypersonic boundary layer flow to investigate and quantify errors associated with quantitative planar laser induced fluorescence thermometry and velocimetry techniques were performed using OpenFOAM. The compressible rhoCentralFoam solver was modified to include multiple species transport and chemical reactions. Simulations replicated conditions used in NASA Langley's 31" Mach 10 facility with a wedge model oriented at various angles of attack with respect to the freestream flow in the test section. OpenFOAM predictions were compared to ANSYS Fluent v6.3 simulation results. The wedge angle of attack was varied in the simulations. Adverse chemistry effects from the reaction of nitric oxide with molecular oxygen were investigated at various facility running conditions. Specifically, the effect of heat release on velocity and temperature profiles that would be obtained using the non-intrusive laser measurement techniques was assessed.Ye

    Comparison of Metabolic Response to Colonic Fermentation in Lean Youth vs Youth With Obesity

    No full text
    Importance: Pediatric obesity is a growing health care burden. Understanding how the metabolic phenotype of youth with obesity may modify the effect of intestinal fermentation on human metabolism is key to designing early intervention. Objective: To assess whether adiposity and insulin resistance in youth may be associated with colonic fermentation of dietary fibers and its production of acetate, gut-derived hormone secretion, and adipose tissue lipolysis. Design, setting, and participants: Cross-sectional study of youths aged 15 to 22 years with body mass index in the 25th to 75th percentile or higher than the 85th percentile for age and sex throughout the New Haven County community in Connecticut. Recruitment, studies, and data collection occurred from June 2018 to September 2021. Youths were assigned to a lean, obese insulin sensitive (OIS), or obese insulin resistant (OIR) group. Data were analyzed from April 2022 to September 2022. Exposure: Participants consumed 20 g of lactulose during a continuous 10-hour sodium d3-acetate intravenous infusion to measure the rate of appearance of acetate in plasma. Main outcomes and measures: Plasma was obtained hourly to measure acetate turnover, peptide tyrosine tyrosine (PYY), ghrelin, active glucagon-like peptide 1 (GLP-1), and free fatty acids (FFA). Results: A total of 44 youths participated in the study (median [IQR] age, 17.5 [16.0-19.3] years; 25 [56.8%] were female; 23 [52.3%] were White). Consequent to lactulose ingestion, there was a reduction of plasma FFA, an improvement of adipose tissue insulin sensitivity index, an increase in colonic acetate synthesis, and an anorexigenic response characterized by an increased plasma concentration of PYY and active GLP-1 and a reduction of ghrelin in the subgroups. Compared with the lean and OIS groups, the OIR group showed a less marked median (IQR) rate of acetate appearance (OIR: 2.00 [-0.86 to 2.69] μmol × kg-1 × min-1; lean: 5.69 [3.04 to 9.77] μmol × kg-1 × min-1; lean vs OIR P = .004; OIS: 2.63 [1.22 to 4.52] μmol × kg-1 × min-1; OIS vs OIR P = .09), a blunted median (IQR) improvement of adipose insulin sensitivity index (OIR: 0.043 [ 0.006 to 0.155]; lean: 0.277 [0.220 to 0.446]; lean vs OIR P = .002; OIS: 0.340 [0.048 to 0.491]; OIS vs OIR P = .08), and a reduced median (IQR) PYY response (OIR: 25.4 [14.8 to 36.4] pg/mL; lean: 51.3 [31.6 to 83.3] pg/mL; lean vs OIR P = .002; OIS: 54.3 [39.3 to 77.2] pg/mL; OIS vs OIR P = .011). Conclusions and relevance: In this cross-sectional study, lean, OIS, and OIR youth demonstrated different associations between colonic fermentation of indigestible dietary carbohydrates and the metabolic response, with OIR youth showing minimal metabolic modifications as compared with the other 2 groups. Trial registration: ClinicalTrials.gov Identifier: NCT03454828
    corecore