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Abstract
Purpose — The purpose of this paper is to develop new boundary conditions for simulating the injection
molding process of polymer melts.

Design/methodology/approach — The boundary conditions are derived and implemented to simulate
real-life air vents (used to allow the air escape from the mold). The simulations are performed in the
computational library OpenFOAM® by considering two different fluid models, namely, Newtonian and
generalized Newtonian (Bird—Carreau model).

Findings — A detailed study on the accuracy of the solver interFoam for simulating the filling stage is
presented, by considering simple geometries and adaptive mesh refinement. The verified code is then used to
study the three-dimensional filling of a more complex geometry.

Originality/value — The results obtained showed that the numerical method is stable and allows one to
model the filling process, simulating the real injection molding process.
Keywords Injection molding, Simulation, Boundary conditions, OpenFOAM®
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1. Introduction

Nowadays, any project activities should be supported by suitable simulation tools, aiming
the optimization of the process and the minimization of the resources spent on the design
process. In the market, there are several modeling codes able to simulate extremely complex
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processes, but the dissemination of these codes in industry faces two major difficulties, the
cost of proprietary software licenses and/or the nonexistence of human resources able to
use these tools adequately. For the former, a possible solution is to resort to open source
modeling software. For the latter, specialized human resources should be progressively
educated to use modeling tools, to support the product development in an efficient manner.
Notice the easy access to the software inherent to open-source alternatives, and it also
facilitates the personnel education.

The consumption of plastics has increased significantly in the past few decades,
overcoming the consumption of any other raw material. Because of their versatility,
polymers can be used in several sectors, such as automotive, packaging, agriculture and
electrical. To obtain the final plastic product with the desired shape, one has to transform
raw material, granules or powders of plastic/polymer, into a polymer melt that can easily be
shaped, and one of the most used techniques to achieve this goal is the injection molding
process. Therefore, in this work, we are interested in the simulation of the polymer injection
process, more precisely, the filling stage, and accordingly to what was stated above, the
open-source OpenFOAM® (2004) software seems to be the adequate tool to perform such
studies.

The first developments on the mathematical modeling of the injection molding filling stage
were limited to one-dimensional cases and then evolved to the Hele-Shaw approximations that
neglect pressure variation along the thickness direction and assumes a fully developed velocity
profile at every location (Kennedy, 2009). Nowadays, parts are becoming increasingly complex,
meaning that thickness plays an important role that cannot be overlooked. Therefore, the
validity of the Hele-Shaw approximation became limited to simple geometries/conditions. To
overcome this problem, the use of three-dimensional modeling to simulate injection molding is
a demand. More recent studies use three-dimensional numerical models. Hétu et al (1998)
presented a three-dimensional finite element method capable of predicting velocity, pressure,
temperature and the position of the flow fronts. The polymer melt behavior was modeled using
Carreau and Arrhenius constitutive models. In the same year, Pichelin and Coupez (1998)
simulated the filling process considering a viscous incompressible flow under isothermal
conditions. To solve the polymer melt motion equation, they introduced a Taylor-Galerkin
scheme. Three years later, Chang and Yang (2001) presented a finite volume approach to
simulate the injection molding filling stage. They simulated the isothermal flow of an
incompressible Newtonian fluid. They also compared their results with the results obtained by
assuming the Hele-Shaw simplification. The two approaches produced identical results for the
filling of thin cavities, but the three-dimensional model showed a better accuracy in the filling
of thicker cavities. More recently, Yan et al (2007) solved the Navier-Stokes equations using
streamline-upwind/Petrov-Galerkin (SUPG) and pressure-stabilizing/Petrov-Galerkin (PSPG)
formulations. Their results were compared with the proprietary software Moldflow (Autodesk,
2020), revealing that the applied model achieved identical results for the filling process. A large
number of works are currently being published on the subject of numerical simulation of the
injection molding process, considering new and different phenomena that may occur along the
process, and also taking into account the rheology of the different fluids. For instance, the study
of Azaman et al (2013) on residual stress distribution in the injection molding process using
wood polymer composites and the study of Kim and Isayev (2015) in birefringence using co-
injection molding.

A more recent work on this topic is given by La et al. (2018), where a numerical analysis of
the injection molding process was carried out using the interpolated domain decomposition
method. The information on the filling behavior of the polymer melt was first calculated from a
25D injection molding analysis. The 3D injection molding analysis was then conducted with



the calculated pressure distribution. This technique is suitable for micro-injection, but when
used at macro scales it loses information and cannot capture all the flow features.

The main problem with 3D simulations is the computational cost. This computational
cost increases with mesh refinement, and therefore, highly accurate transient numerical
simulations require additional computational power (clusters and supercomputers) that may
not be accessible to everyone. A possible solution is the use of local adaptive mesh
refinement, i.e. performing a mesh refinement only in the regions of higher gradients (for
example, at the interface). This technique will be explored in this work.

Another possible solution to reduce the computational costs is the use of a different type
of discretization of the governing equations, where the traditional mesh is replaced by new
methods that can more easily deal with the interface topology, discretization and
implementation. This is the case of the smoothed-particle hydrodynamics (SPH) method, a
meshfree Lagrangian method. The computational cost of SPH simulations per number of
particles is significantly less than the cost of grid-based simulations per number of cells
(when the metric of interest is related to fluid density). The major drawback of this method
is the accurate implementation of boundary conditions. The works of Xu and Yu (2019,
2017) illustrate (for the first time) the feasibility of this method do deal with the non-
isothermal injection molding processes. They use the corrected kernel gradient to increase
the computational accuracy, and the Rusanov flux is introduced into the continuity equation
to alleviate large and random pressure oscillations. They provide an enhanced treatment of
the wall boundary, which can model arbitrary-shaped mold walls. It is shown that the SPH
method is a powerful computational tool for the simulation of non-isothermal free surface
flows during the injection molding process.

It should be remarked that although 3D simulations are the most accurate and reliable
numerical techniques for modeling the injection molding process (when compared to any
other approximate technique such as: 1D, 2.5D or Hele-Shaw), in some cases this simplified
analysis is of importance (Mollaabbasi ef al., 2019). It all depends on the filling process being
studied and the need for accurate information. For example, in the analysis performed in
Mollaabbasi et al. (2019), one cannot predict the interface propagation, but the results are
qualitatively sound and compare with the experimental counterpart.

The objective of this work is then the modeling of the filling stage by simulating the real-
life air vents (used to extract the air from the mold). For that, new boundary conditions are
proposed and the equations governing the two-phase flows are solved using the Volume of
Fluid (VoF) method. The simulations are performed in the open-source computational
library OpenFOAM® considering two different fluids, namely, Newtonian and generalized
Newtonian (Bird-Carreau model). A detailed study on the accuracy of the interFoam solver
for simulating the filling stage is presented, and, the verified code is then used to study the
filling of a specimen. Notice that the originality of the current manuscript lays on the idea to
simulate the venting during the injection molding, different from the previous proposed
approaches, and provides an additional way for the injection molding community to
optimize the flow uniformity. Additionally, the novelty of this work is on the detailed 3D
numerical study using both static and dynamic meshes.

Regarding real-life air vents, we have that the dimensions may go from 0.036 x 12 mm?
for Nylon, Acetal and PET to 0.077 x 12 mm? for most thermoplastics except Nylon and
Acetal (Rosato and Rosato, 2012). For the simulation of such air vents, the most common
method is to model only the molten phase without considering the air venting system (the
molten polymer fluid front evolves along the mold without any influence from the trapped
air) (Zhou, 2013). The second most common method is to numerically consider that the end-
wall of the mold is an outlet boundary condition (both polymer and air can exit the mold).
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More recent boundary conditions were proposed in the literature, that can better model real-
life air-vents. In the works of Hétu ef al. (1998) and Chang and Yang (2001), no polymer melt
is allowed to cross the mold walls, but the air is assumed to be free to leave the mold as the
polymer melt advances (this is done for all solid walls). Another way to model the air-
venting system is to consider a small patch with the size of a real air vent and to allow the
material (air and molten polymer) to exit through that boundary. This later boundary
conditions are used by proprietary software, and one cannot access their real computer
implementation. More recent papers on air-vents for injection molding make use of such
software (Ozdemir and Pahlavani, 2018); therefore, the black-box boundary conditions do not
allow a clear understanding of the process being modeled. In this work, we develop new
ways to model the air vents and also provide the boundary conditions used. In our approach,
we took the percentage of molten polymer which fills the cell touching the venting gap has
the criteria to release the air from the mold cavity.

This work is organized as follows. In Section 2, the governing equations are presented
and the numerical method is briefly described. Section 3 is devoted to the implementation of
the new boundary conditions. Sections 4 and 5 present a detailed study on mesh refinement
and location of the air vents boundary conditions. The work ends with the main conclusions.

2. Governing equations and numerical method

2.1 Governing equations

During the filling stage of the injection molding process the melt is assumed to be
incompressible. The transient flow of non-Newtonian inelastic, incompressible fluids is then
governed by continuity,

V-u=0 @
and the momentum conservation equations,
ou
pE+pV-(uu):—Vp+V~t+pg+okVa @
where:
u = velocity vector;
g = gravity;

p =thepressure;

p = fluid density;

o = surface tension;

% =mean curvature of the free surface; and
7 = Newtonian extra stress tensor.

which is given by:
T=17 (Vu + (Vu)T) =2nD 3)

where D is the symmetric rate of strain tensor and the viscosity 7 is either a constant (for
Newtonian fluids), or a function of the second invariant of the rate of the strain tensor, D. For
the latter, in this work we have considered the Carreau model, given by:

(n-1)/2
N(¥) = Moo + (Ko — Moo)[lJr()\ 7)2} “)



where w.., o A and n are constant parameters which are obtained from a fit to the
rheological data obtained experimentally for the material being injected, and

¥ =12(D:D) = v2ur(D?).

In this work, two phases are considered, air and liquid (the polymer melt), and this is
modeled using the VoF method. The VoF method is a numerical procedure used for tracking
the location of the interfaces between fluids. It assigns a scalar « to all computational cells.
Being « = 1 in one of the phases and a = 0 in the other phase, and it takes intermediate
values for cells where the interface is located (Hirt and Nichols, 1981). Fluid properties such
as density and viscosity are calculated as the weighted average of the different phases
properties according to each volume fraction. Therefore, for a case with only two fluids, 1
and 2, where « is the volume fraction of 1, the density p and kinematic viscosity » are given
by Ubbink (1997):

p=ap; +(1—a)p,, ©)

1 =amn; + (1 - a)n, ©)

The method used in this work (based on the OpenFOAM® interFoam solver) decomposes
the velocity vector field u in the same way as density and viscosity are decomposed, and
creates an auxiliary vector field u, (relative velocity) that is used in the calculation of the «
field (Berberovic et al., 2009). The scalar components of velocity are then given by:

u=oaou + (1 — a)II2, (7)
u, =u —uy. (8)
The governing equation for a is:
Jda
STV (au au) + V- [a(1 - a)u,] =0. )

This allows to use the one fluid approach to solve the continuity equation (1) and momentum
balance equation (2). For more details, please refer to Ubbink (1997).

2.2 Numerical method
The numerical simulations were performed by solving the system of equations given by
equations (1)-(4) together with equation (9). To do that, a straightforward finite volume
discretization procedure was used and the PIMPLE (the PIMPLE algorithm is a combination
of PISO (Pressure Implicit with Splitting of Operator) and SIMPLE (Semi-Implicit Method
for Pressure-Linked Equations)) method was used to calculate the pressure and velocity
fields. For the solution of the polymer melt volume fraction (the o equation) discretized
system of equations, the smoothSolver with a symmetric GaussSeidel smoother was used.
For the pressure correction equation the Preconditioned (DIC) Conjugate Gradient method
(Hestenes and Stiefel, 1952) was used, and for the velocity, the smoothSolver with a
symmetric GaussSeidel smoother was used once again.

To approximate the transient, advection, diffusion and source terms the following
numerical schemes were considered: the Euler method (Atkinson, 1989) for the evolution in
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Figure 1.
Schematic geometry
of a mold with air
vents

Figure 2.

Snippet of the
boundary condition
code

time, the Gauss linear for gradients (Atkinson, 1989), the Gauss linearUpwind grad(U)
(Courant et al, 1952) was used for the convection of velocity, the advection terms are
approximated by the Gauss vanLeer and Gauss interface compression methods, the Gauss
linear corrected was considered for the Laplacian terms, and finally, for the remaining terms,
a Gauss linear method was used.

Note that for the different simulations, different solvers and different numerical schemes
can be used. This will be explained along the text. Additionally, the readers are referred to
Pedro et al. (2020) for the numerical validation of the current algorithm.

3. Air vents boundary condition
As explained before, the aim of this work is the implementation of new boundary conditions that
can simulate the real behavior of air vents. As shown in Figure 1, the air vents are used to allow
the air escape from the mold. These pathways need to be thick enough to let air out easily, but thin
enough to avoid the molten plastic to flow through it. Examples of a typically used depth for the
vents are: ABS and Polycarbonate, 5.08 wm; Polyethylene, Polystyrene and Polypropylene,
254 pum; PVC flexible, 381 wm. The vent width W can be anywhere from 1/3 cm wide or more,
and a common width is 2/3cm. L should be a minimum of 0.076 cm and a maximum of 0.32cm
(Rosato and Rosato, 2012). Although Figure 1 is only showing one air vent, it is common to have at
least 30% of the perimeter of the cavity with equally spaced air vents (Rosato and Rosato, 2012).
Basically, as illustrated in Figure 2, in this new boundary condition the following conditions
are imposed: when the value « is higher than a certain threshold value £ (0 = & < 1) in the cell
touching the venting gap, the velocity of the material at that boundary is set to zero (it behaves as
a wall) and a zero-gradient boundary condition is used for the pressure. If instead o = &, the
pressure at that boundary is set to zero (atmospheric pressure) and a zero-gradient boundary
condition is considered for the velocity, allowing the air to exit the mold (as it is done for an outlet
boundary condition). This boundary condition was tested in the MSc thesis of Magalhdes (2016),

\

valuePhaseFractionPressure.C valuePhaseFractionVelocity.C

if (alphaCellp[facei] > referenceAlpha_) if (alphaCellp[facei] > referenceAlpha_ || phip[facei] < 0.0)
s
{

refGrad()[facei] = Zero; refValue()[facei] = vector::zero;
valueFraction()[facei] = Zero; valueFraction()[facei] = 1.0;
} )
else else
) {
refValue()[facei] = Zero; refGrad()[facei] = vector::zero;
valueFraction()[facei] = 1.0; valueFraction()[facei] = 0.0;

) }



and some stability problems were reported because the air was allowed to enter the mold from
the air vents. Therefore, in this work, we also add a new feature to the boundary condition, which
do not allow the air to enter the mold through the air vent.

The boundary condition should respect the real dimensions of the air vents. For really
small air vents, it was considered only one cell face as an air vent. The way to do that is to
first generate the mesh and edit the mesh definition to change the boundary by adding
directly an extra patch with only one cell (or more cells, depending on the mesh size). An
example is provided in Figure 3, where the methodology proposed to create a boundary
condition per cell is illustrated. It should be remarked that the supplementary material
provided comprises both the new boundary conditions (new libraries) and a case study.

4. Two-dimensional case study

In the 2D case study, several tests areperformed to both the original— primary air vent (the
air can exit and enter the mold) and the improved air vents — pure air vent boundary
conditions (the air can only exit the mold). The outlet works as an air vents boundary
condition.

4.1 Primary and pure air vent boundary conditions: a mesh refinement study

To test the boundary conditions, a simple block with dimensions 50 x 50 mm and three
different mesh refinements were considered, 20 x 20, 40 x 40 and 80 x 80 cells. The case of a
fixed Courant and a fixed time-step was also taken into account.

Newtonian model parameters: kinematic viscosity of the polymer melt v,y = 0.2 m?s,
kinematic viscosity of the air v,;, = 0.0812 m%/s, Ppolymer = 1000 kg/m®, par = 1.23 kg/m?,
inlet velocity = 6.33 mm/s. Similar parameters were used by Chang and Yang (2001).

Figure 4 shows the evolution of the polymer melt front in the simple channel described
before [Figure 4(f)]. A fixed Courant number is assumed. The results obtained with the
primary air vents present some instabilities [Figure 4(a)-(c)], with unstable air flux, entering
and leaving the mold, as evidenced by the velocity vectors. As expected, the quality of the
results improve with the decrease of the Courant number. Note that for the mesh 80 x 80 and
Co = 0.1, the results obtained are not physically sound, and they could be improved by
simply considering a Co = 0.01. As the mesh refinement increases the results become more
stable. The results obtained with the new boundary condition pure air vent are stable, even

inlet
{0}
(. outerWall
outlet airVent {

patch;
79;
12720

type
nFaces
startFace

patch;
12720; \

) airVent
leftWall {

{
type
nFaces
startFace

leftWall

type patch;
nFaces I;
startFace 12799;

{...}

rightWall

""""""""""""""" {...}

frontPlane

' }
o}

backPlane

tod

Notes: In this case, the outlet patch was divided into two new patches, the outer Wall
and the air Vent
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Figure 4.
Two-phase flow ina
2D square channel of
dimensions

50 x 50 mm,
distribution of
polymer melt volume
fraction and cell
velocity vectors

Figure 5.
Distribution of
polymer melt volume
fraction and cell
velocity vectors, and
pressure fields using
two different values
of A f (in seconds) for
the pure air vents
boundary condition
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Notes: (a)-(d) Results obtained for the primary air vents with different mesh refinements;
(e) Results obtained for the pure air vent boundary condition with mesh 80%80;
(f) Schematic of the geometry and boundary conditions

for a Co = 0.1, as shown in Figure 4(e). These results were obtained for a mesh 80 x 80, but a
stable flow was also achieved for the coarser meshes.

Figure 5 shows the polymer melt volume fraction and pressure fields for two different
values of time-step (A #) using the pure air vent boundary condition. On the left: the results
obtained for three different meshes and A¢ = 10~ s. Note that the a evolution is smooth
with no stability problems. Regarding the pressure field, it is not smooth near the right wall
with coarser meshes or with high time-steps.

It should be remarked that in some works found in the literature, to improve the stability of
the method, the viscosity of air is artificially increased, as happens for example in Chang and
Yang (2001). In this work, stable results were obtained with the real material parameters.

The solver was also tested by considering generalized Newtonian fluids modeled by the
Bird-Carreau model given in equation (4). A fit to the shear viscosity rheological data of a
polystyrene melt (Munstedt, 2011) was performed leading to the following parameters:

Mesh 20 x 20, At=10"*

1 Mesh 40 x 40, At=10"1 1 Mesh 80 x 80, At=10"*

o

1 Mesh 80 x 80, At=10""

y/L

=

5
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00 0.2 0.4 0.6 0.8
z/L

O0 0.2 0.4 0.6 0.8
z/L

Polymer melt volume fraction , a Modified pressure, p —pgh (kg/ms?)

—
0.0 0.3 0.5 0.8 1.0 —6x10'  2x10°  5x10*



Vopolymer = D3 m%s, Voopolymer = 0 m%s, A = 1.1s,n = 0.15 and Ppotymer = 1000 kg/m®>. The
simulations were stable, similar to what happened for the Newtonian fluids. Note that this
fluid is shear thinning and, therefore, a lower viscosity is expected in regions of higher shear
rates. This fact should improve the numerical stability, because the difference between the
air and polymer melt viscosities becomes smaller leading to a smoother transition.
The results obtained for three different Courant numbers are shown in Figure 6 (the results
are stable for all the Courant numbers considered). It should be remarked that Magalhies
(2016) report oscillations of the interface near the wall, and, the use of the new boundary
condition allowed to suppress them.

4.2 Location of the air vents

Until now, the location of the air vents boundary conditions is restricted to the outlet region.
In this case study, the air vents boundary condition was also considered at the side walls.
Note that the cases where the air vents are restricted to specific regions (or even specific
cells) will be studied in Section 5.

Figure 7 shows the mold filling of a Newtonian and a Bird-Carreau fluid using three
different Courant numbers. Note that the existence of non-null velocity vectors near the side
walls due to the exit of the air. This boundary condition allows improvements in the results
because a higher percentage of filling of the mold was obtained and also the instantaneous
removal of air reduces the oscillations at the interface (especially for the Bird—Carreau fluid).

4.3 Influence of a threshold value (&) on the mass conservation

As explained before, the new boundary condition assume that when the polymer melt
volume fraction (e) is higher than a certain value £ (0 = & < 1) in the cells that contain the
venting face, the velocity of the material at that boundary is set to zero (it behaves as a wall),
and a zero-gradient boundary condition is used for the pressure. If instead a = &, the
pressure at that boundary is set to zero and a zero-gradient boundary condition is
considered for the velocity, allowing the air to escape the mold (similar to an outlet boundary
condition). The influence of £ on the mass conservation: as expected, without a sharp
interface, a small portion of fluid may be los?, passing through the air vents.

Figure 8 shows the mold filling with a Newtonian fluid by considering & = 0.0001, 0.01,
0.5 and 0.99. In the first case, £ = 0.0001, if the cell adjacent to the air vents is filled with
0.00001% of polymer melt, the air vent closes and both the polymer melt and air become
trapped. The use of a coarser mesh would lead to a partially filled mold cavity. As &

Co =0.01 Co = 0.001

1
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Figure 7.
Distribution of
polymer melt volume
fraction and cell
velocity vectors for a
Newtonian and a
Bird-Carreau fluid
using three different
Courant numbers
(mesh 80 x 80)

Figure 8.
Distribution of
polymer melt volume
fraction with a
Newtonian fluid for
four different values
of £ (0.0001,0.01,0.5
and 0.99)
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increases, the mold cavity becomes totally filled, but there is loss of polymer melt (a
quantification of that loss will be provided in the next section for the 3D cases).

5. Three-dimensional case study

This 3D case study is performed on a simple geometry (hexahedron) with the
dimensions of the tip of a tensile test specimen, as show in Figure 9. This type of
specimen is often used to characterize the mechanical behavior of different polymeric
materials. The fluid considered in this work was obtained from a typical polymer used



in the injection molding industry, and the parameters for the Bird—Carreau model are
00, potymer = 5-51M/S, Voo, potymer = 0m%s, X = 0.49s, 7 = 0.38 and ppoymer = 762.3kg/
m”. The polymer melt inlet velocity was defined equal to 6.33 mm/s.

5.1 Mesh refinement study

A mesh refinement study was performed considering three different meshes, 22 x 45 x 4,
44 % 90 x 8, 88 x 180 x 16 and four different Co numbers. To avoid the cluttering of figures
only the results obtained for Co = 0.01 are shown. Also, the results obtained were similar for
other Co numbers used. The only case that presented some oscillations in the pressure field
was for the less refined mesh and Co =0.1.

Figure 10 shows the polymer melt volume fraction and pressure fields distributions
along the channel. Note that as shown in Figure 9, two air vents are present near the corners.
The reason for choosing the corners is because the probability of having trapped air in this
region is higher, which is a criterium used in practice when designing molds. With a third
dimension the interface is more difficult to capture, and, it is more prone to instabilities.
However, both fields are stable, and no unphysical oscillations are observed. Note that for
the more refined meshes, small oscillations at the interface near the wall due to trapped air,
are observed. This is also expected in practice, a phenomenon usually designated by
fountain flow (Rosato and Rosato, 2012). Regarding the pressure field, it can be seen that a
smooth distribution is obtained and mesh refinement leads to a slightly different pressure
distribution along the mold. It should be remarked that some air is trapped at the center
region of the outlet, as the air vents are located at the corners.

In Figure 11, the polymer melt volume fraction in percentage and integrated pressure
along time are shown (note that compression is not considered in this work). As expected an
almost linear filling of the mold is obtained due to the simplicity of the geometry and due to
the fact that the flow is incompressible. It is not possible to obtain a filling of 100%, only
99%. The differences between the two meshes are small, but, for the most refined mesh, the
integrated pressure field shows an exponential and smooth increase when the air vents are
closing. This is due to the small size of the air vents and to the fact that for a less refined
mesh the mold entraps air close to the wall, allowing a higher number of iterations without
diverging.

5.2 Adaptive mesh refinement vs static meshes

Due to the excessive execution time of the simulations, the ability to use dynamic meshes
was tested. These meshes allow a local adaptive mesh refinement in regions of high
gradients of a. Two cases were considered:

real specimen computational domain

S0

air vents
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Figure 10.

Polymer melt volume
fraction and pressure
distributions
obtained for

Co =0.01 and three
different mesh
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(1) Compare the results obtained with mesh 44 x 90 x 16, and the results obtained
with mesh 22 x 45 x 4 (with one level of local adaptive mesh refinement); and

(2) Compare the results obtained with mesh 88 x 180 x 16, and the results obtained
with mesh 22 x 45 x 4 (two levels of local adaptive mesh refinement).

These results are shown in Figure 12.

The results obtained for case (1) are similar, with the only difference being the
representation of the interface near the exit. Since the objective is to obtain good qualitative
results, the use of dynamic meshes proved to be a valuable option to achieve it in a shorter
period of time, or, for complex geometries. For case (2) larger differences were expected, but,
as shown in the top and lateral views (with and without a translucid «), the contours are
practically the same.

6. The filling of a tensile test specimen mold

6.1 Geometry and mesh

The previous test on mesh refinement and location of air vents allowed us to understand the
behavior of these new pure air vent boundary condition, and therefore the next logical step is



to use this boundary condition in more complex geometries. The tensile test specimen was
presented in Figure 9, and the respective mold cavity is shown in Figure 13. The specimen
mold cavity is formed by a sprue where the material is injected, the runner, the gate and the
part (the specimen itself). The volume (V) of the 3D tensile test specimen is of 20 cm®.

6.2 Results and discussion
To have an idea of the simulation times and flow behavior, the simulations were performed
by first considering the PIMPLE algorithm and a really high value of the maximum Courant
number (Co = 25). As expected, the results obtained showed unphysical oscillations
(especially for the pressure field). The maximum cell size is 0.00045 mm for the sprue, runner
and specimen, and the maximum cell size is 0.000015 mm for the air vents and gate.

With an inlet velocity (Uy,) of 5 cm/s, it takes approximately 32s (V/Ui, .(¢11)?) to fill
the mold. Notice that the inlet velocity used was chosen only for academic purposes and is
not compared to the one verified in real-life. The aim is to assess the implementation of the
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Figure 13.
Geometry of the
specimen mold cavity
(dimensions in mm)
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new boundary condition in a 3D case study. The integrated pressure for the case Co = 25 is
shown in Figure 14(a). It can be seen that in the interval 24.3 to 27.0 s really high oscillations
in pressure are obtained. In this interval the fluid is going through the specimen expansion
region near the end. Oscillations are present in the integrated pressure in the convergent
region of the specimen. To smooth this oscillations it was considered the PISO algorithm
with maximum Courant number of 0.8 and 0.1. The results are shown in Figure 14(b). It can
be seen that for the case Co = 0.8 only small perturbations are obtained, but these
oscillations are eliminated with Co = 0.1 [see inset in Figure 14(b)].

Note that for the three cases studied the evolution of the interface was practically the
same and the amount of trapped air was also similar. Only the quantitative integrated
pressure results were different. It should be remarked that each simulation was performed in
parallel using four cores, and, it took 2 and 10 days to simulate the cases Co = 25 and 0.8,
respectively, and it took 10 days to simulate the interval 24.3 to 27.0 s for Co = 0.1.

Figures 15 and 16 show the results of the mold filling for the case Co = 0.8 and using
different perspectives (the videos are given as supplementary material). Figure 15 shows the
existence of entrapped air near the corners. This air is partially dragged along the mold
filling. Near the gate (Figure 16), the code captures well the evolution of the interface in a
region where high velocities are obtained. These tests were performed for different meshes,
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and the final conclusion was a maximum Courant number of 0.8 and 0.1 could provide
accurate results for the evolution of pressure along time (considering a mesh of 251666 cells
with 97% of quadrilateral cells refined near the regions of expected high shear rates — the
region involving the gate and near the air vents).

Finally, it can be concluded that the new boundary conditions are stable and allow the
removal of air from mold, simulating real air vents.

7. Conclusions and future work
New boundary conditions to simulate the air vents used in the injection molding process
were proposed. The boundary conditions were implemented in the OpenFOAM®
computational library (solver interFoam). The numerical code was tested using 2D and 3D
case studies with static and dynamic local adaptive mesh refinement. The results obtained
showed that the numerical method is stable and allows one to model the filling process,
simulating the real injection process. The new implementation allowed to suppress
oscillations in both the velocity and pressure fields. These oscillations were present in our
past implementation of the boundary conditions, where air was allowed to enter the mold.
This new modeling tool allows to study in more detail the injection molding process, and,
consequently, the improvement of the experimental procedure, with the support of the
detailed results obtained numerically. With the numerical simulations engineers and
technicians will be able to follow the evolution of the polymer melt front inside the mold and,
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therefore, anticipate and correct potential problems in the final product, such as the presence
of weld lines.

In the future, the research group will perform the implementation of these new boundary
conditions in solvers that can deal with more complex and realistic constitutive equations
for polymer melts, which take into account viscoelasticity.
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