407 research outputs found

    Projecting Washington - British Columbia Truck Freight Border Crossings and Arterial Usage

    Get PDF
    Continuing adaptation to changing transportation needs is critical in maintaining efficiency and reducing costs of raw and manufactured goods to ensure economic stability and growth. With bilateral trade in excess of $1.4 billion per day between the U.S. and Canada and over 200 million annual crossings (passenger vehicles and freight trucks) (U.S. Embassy, Ottawa, 2006), knowledge of the composition of commodities crossing the border and the growth in the flow of those commodities is vital to future policy making. This report focuses on cross-border flows by truck between Washington and British Columbia, through decomposition of the northbound and southbound flows by industry and commodity, coupled with projection of the trade growth in those industries. By knowing expected increases in commodity flows across border port locations, policy makers can better adapt border ports to ensure efficiency in truck movements. Increased efficiency is important to trade competitiveness in the international marketplace

    Cardiac Magnetic Resonance T1 Mapping in Cardiomyopathies

    Get PDF
    Cardiac magnetic resonance (CMR) imaging has been widely used to assess myocardial perfusion and scar and is the noninvasive reference standard for identification of focal myocardial fibrosis. However, the late gadolinium enhancement (LGE) technique is limited in its accuracy for absolute quantification and assessment of diffuse myocardial fibrosis by technical and pathophysiological features. CMR relaxometry, incorporating T1 mapping, has emerged as an accurate, reproducible, highly sensitive, and quantitative technique for the assessment of diffuse myocardial fibrosis in a number of disease states. We comprehensively review the physics behind CMR relaxometry, the evidence base, and the clinical applications of this emerging technique

    Ranchers Feeding Kids: A Multi-Partner Approach to Programming

    Get PDF
    School districts face challenges to balance budgets and provide healthy meals. Oregon State University Extension agents joined with community partners to form Ranchers Feeding Kids (RFK). The program started with ranchers donating cattle that were harvested and processed for local schools\u27 lunch programs. An educational event taught youth about livestock production, its importance to the local economy, and beef\u27s health benefits. In 4 years, the program has grown to include 32 schools in 13 different school districts, providing over 5,500 students with meals. Forty donated cattle, with a value of over $40,000, have provided 30,000 pounds of beef to schools

    Effect of binary collisions on electron acceleration in magnetic reconnection

    Get PDF
    Context. The presence of energetic X-ray sources in the solar corona indicates there are additional transport effects in the acceleration region. A prime method of investigation is to add collisions into models of particle behaviour at the reconnection region.<p></p> Aims. We investigate electron test particle acceleration in a simple model of an X-type reconnection region. In particular, we explore the possibility that collisions will cause electrons to re-enter the acceleration more frequently, in turn causing particles to be accelerated to high energies.<p></p> Methods. The deterministic (Lorentz) description of particle gyration and acceleration has been coupled to a model for the effects of collisions. The resulting equations are solved numerically using Honeycutt’s extension of the RK4 method to stochastic differential equations. This approach ensures a correct description of collisional energy loss and pitch-angle scattering combined with a sufficiently precise description of gyro-motion and acceleration.<p></p> Results. Even with initially mono-energetic electrons, the competition between collisions and acceleration results in a distribution of electron energies. When realistic model parameters are used, electrons achieve X-ray energies. A possible model for coronal hard X-ray sources is indicated. Conclusions. Even in competition with energy losses, pitch-angle scattering results in a small proportion of electrons reaching higher energies than they would in a collisionless situation.<p></p&gt

    Mussels as a dietary source of omega-3 fatty acids

    Get PDF
    Numerous United Kingdom and European Union expert panels recommend that the general adult population consumes ~250mg of EPA+DHA per day through the consumption of 1 portion of oily fish per week. Of particular importance are the long chain omega-3 fatty acids EPA (eicosapentaenoic acid) and DHA (docosahexaenoic acid), which are only found in appreciable amounts in marine organisms. Increasing oily fish consumption conflicts with sustaining fisheries and so alternative dietary sources of EPA+DHA must be explored. Mussels are high in omega-3 PUFAs and are a good source of essential amino acids. Therefore, the present study aimed to investigate the impact of introducing mussels as a protein source in the lunchtime meal 3 times per week for 2 weeks on omega-3 status in free-living participants. Following an initial 2-week monitoring period, 12 participants (8 male, 4 female) attended the nutrition laboratory 3 times per week for two weeks. Each participant received a personalised lunch constituting one-third of their typical daily calorie consumption with ~20% of the calories supplied as cooked mussels. A portion of cooked mussels from each feeding occasion was tested for total omega-3 content. The mean ± SD mussel EPA+DHA content was 518.9 ± 155.7mg/100g cooked weight meaning that each participant received on average 709.2 ± 252.6mg of EPA+DHA per meal or 304.0 ± 108.2mg of EPA+DHA per day. Blood spot analysis revealed a significant increase in the omega-3 index (week 1 = 4.27 ± 0.81; week 4 = 5.07 ± 1.00) and whole blood EPA content during the study (%EPA week 1 = 0.70 ± 0.0.35; %EPA week4 = 0.98 ± 0.35). Consuming mussels 3 times per week for two weeks as the protein source in a personalised lunchtime meal is sufficient to moderately improve the omega-3 index and whole blood DHA+EPA content in young healthy adults

    Multiple AMPK activators inhibit L-Carnitine uptake in C2C12 skeletal muscle myotubes

    Get PDF
    Mutations in the gene that encodes the principal L-Carnitine transporter, OCTN2, can lead to a reduced intracellular L-Carnitine pool and the disease Primary Carnitine Deficiency. L-Carnitine supplementation is used therapeutically to increase intracellular L-Carnitine. As AMPK and insulin regulate fat metabolism and substrate uptake we hypothesised that AMPK activating compounds and insulin would increase L-Carnitine uptake in C2C12myotubes. The cells express all three OCTN transporters at the mRNA level and immunohistochemistry confirmed expression at the protein level. Contrary to our hypothesis, despite significant activation of PKB and 2DG uptake, insulin did not increase L-Carnitine uptake at 100nM. However, L-Carnitine uptake was modestly increased at a dose of 150nM insulin. A range of AMPK activators that increase intracellular calcium content [caffeine (10mM, 5mM, 1mM, 0.5mM), A23187 (10μM)], inhibit mitochondrial function [Sodium Azide (75μM), Rotenone (1μM), Berberine (100μM), DNP (500μM)] or directly activate AMPK [AICAR (250μM)] were assessed for their ability to regulate L-Carnitine uptake. All compounds tested significantly inhibited L-Carnitine uptake. Inhibition by caffeine was not dantrolene (10μM) sensitive. Saturation curve analysis suggested that caffeine did not competitively inhibit L-Carnitine transport. However, the AMPK inhibitor Compound C (10μM) partially rescued the effect of caffeine suggesting that AMPK may play a role in the inhibitory effects of caffeine. However, caffeine likely inhibits L-Carnitine uptake by alternative mechanisms independently of calcium release. PKA activation or direct interference with transporter function may play a role

    Turbulent cross-field transport of non-thermal electrons in coronal loops: theory and observations

    Get PDF
    <p><b>Context:</b> A fundamental problem in astrophysics is the interaction between magnetic turbulence and charged particles. It is now possible to use Ramaty High Energy Solar Spectroscopic Imager (RHESSI) observations of hard X-rays (HXR) emitted by electrons to identify the presence of turbulence and to estimate the magnitude of the magnetic field line diffusion coefficient at least in dense coronal flaring loops.</p> <p><b>Aims:</b> We discuss the various possible regimes of cross-field transport of non-thermal electrons resulting from broadband magnetic turbulence in coronal loops. The importance of the Kubo number K as a governing parameter is emphasized and results applicable in both the large and small Kubo number limits are collected.</p> <p><b>Methods:</b> Generic models, based on concepts and insights developed in the statistical theory of transport, are applied to the coronal loops and to the interpretation of hard X-ray imaging data in solar flares. The role of trapping effects, which become important in the non-linear regime of transport, is taken into account in the interpretation of the data.</p> <p><b>Results:</b> For this flaring solar loop, we constrain the ranges of parallel and perpendicular correlation lengths of turbulent magnetic fields and possible Kubo numbers. We show that a substantial amount of magnetic fluctuations with energy ~1% (or more) of the background field can be inferred from the measurements of the magnetic diffusion coefficient inside thick-target coronal loops.</p&gt

    Omega-3 Fatty Acids and Skeletal Muscle Health

    Get PDF
    Skeletal muscle is a plastic tissue capable of adapting and mal-adapting to physical activity and diet. The response of skeletal muscle to adaptive stimuli, such as exercise, can be modified by the prior nutritional status of the muscle. The influence of nutrition on skeletal muscle has the potential to substantially impact physical function and whole body metabolism. Animal and cell based models show that omega-3 fatty acids, in particular those of marine origin, can influence skeletal muscle metabolism. Furthermore, recent human studies demonstrate that omega-3 fatty acids of marine origin can influence the exercise and nutritional response of skeletal muscle. These studies show that the prior omega-3 status influences not only the metabolic response of muscle to nutrition, but also the functional response to a period of exercise training. Omega-3 fatty acids of marine origin therefore have the potential to alter the trajectory of a number of human diseases including the physical decline associated with aging. We explore the potential molecular mechanisms by which omega-3 fatty acids may act in skeletal muscle, considering then-3/n-6 ratio, inflammation and lipidomic remodelling as possible mechanisms of action. Finally, we suggest some avenues for further research to clarify how omega-3 fatty acids may be exerting their biological action in skeletal muscle

    Diatom ecological response to deposition of the 833-850 CE White River Ash (east lobe) ashfall in a small subarctic Canadian lake

    Get PDF
    A <5 mm thick volcanic ashfall layer associated with the White River Ash (east lobe [WRAe]) originating from the eruption of Mount Churchill, Alaska (833-850 CE; 1,117–1,100 cal BP) was observed in two freeze cores obtained from Pocket Lake (62.5090°N, −114.3719°W), a small subarctic lake located within the city limits of Yellowknife, Northwest Territories, Canada. Here we analyze changes in diatom assemblages to assess impact of tephra deposition on the aquatic biota of a subarctic lake. In a well-dated core constrained by 8 radiocarbon dates, diatom counts were carried out at 1-mm intervals through an interval spanning  1 cm above and below the tephra layer with each 1 mm sub-sample represented about 2 years of deposition. Non-metric Multidimensional Scaling (NMDS) and Stratigraphically Constrained Incremental Sum of Squares (CONISS) analyses were carried out and three distinct diatom assemblages were identified throughout the interval. The lowermost “Pre-WRAe Assemblage (Pre-WRAeA)” was indicative of slightly acidic and eutrophic lacustrine conditions. Winter deposition of the tephra layer drove a subsequent diatom flora shift to the “WRAe Assemblage (WRAeA)” the following spring. The WRAeA contained elevated abundances of taxa associated with oligotrophic, nutrient depleted and slightly more alkaline lake waters. These changes were only apparent in samples within the WRAe containing interval indicating that they were short lived and only sustained for a single year of deposition. Immediately above the WRAe horizon, a third, “Post-WRAe Assemblage (Post-WRAeA)” was observed. This assemblage was initially similar to that of the Pre-WRAeA but gradually became more distinct upwards, likely due to climatic patterns independent of the WRAe event. These results suggest that lacustrine environments are sensitive to perturbations such as deposition of ash fall, but that ecological communities in subarctic systems can also have high resilience and can recover rapidly. If subsampling of the freeze cores was carried out at a more standard resolution (0.5–1 cm) these subtle diatom ecological responses to perturbation associated with the WRAe depositional event would not have been observed. This research illustrates the importance of high-resolution subsampling when studying the environmental impact of geologically “near instantaneous” events such as episodic deposition of ashfalls

    N budgets and aquatic uptake in the Ipswich River basin, northeastern Massachusetts

    Get PDF
    Author Posting. © American Geophysical Union, 2004. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Water Resources Research 40 (2004): W11201, doi:10.1029/2004WR003172.We calculated N budgets and conducted nutrient uptake experiments to evaluate the fate of N in the aquatic environment of the Ipswich River basin, northeastern Massachusetts. A mass balance indicates that the basin retains about 50% of gross N inputs, mostly in terrestrial components of the landscape, and the loss and retention of total nitrogen (TN) in the aquatic environment was about 9% of stream loading. Uptake lengths of PO4 and NH4 were measurable in headwater streams, but NO3 uptake was below detection (minimum detection limit = 0.05 ΌM). Retention or loss of NO3 was observed in a main stem reach bordered by wetland habitat. Nitrate removal in urban headwater tributaries was because of water withdrawals and denitrification during hypoxic events and in ponded wetlands with long water residence times. A mass balance using an entire river network indicates that basin-wide losses due to aquatic denitrification are considerably lower than estimates from several recent studies and range from 4 to 16% of TDN in stream loading. Withdrawals for domestic use restrict the runoff of headwater catchments from reaching the main stem during low base flow periods, thereby contributing to the spatial and temporal regulation of N export from headwater tributaries.This research was funded by grants DEB- 9726862 and OCE-9726921 (NSF)
    • 

    corecore