4,823 research outputs found

    Black Hole Spectral States and Physical Connections

    Full text link
    The dramatic changes seen in the X-ray spectral and timing properties of accreting black hole candidates (BHCs) provide important clues about the accretion and jet formation processes that occur in these systems. Dividing the different source behaviors into spectral states provides a framework for studying BHCs. To date, there have been three main classification schemes with Luminosity-based, Component-based, or Transition-based criteria. The canonical, Luminosity-based criteria and physical models that are based on this concept do not provide clear explanations for several phenomena, including hysteresis of spectral states and the presence of jets. I discuss the re-definitions of states, focusing on an application of the Component-based states to more than 400 RXTE observations of the recurrent BHC 4U 1630-47. We compare the X-ray properties for the recent 2002-2004 outburst to those of an earlier (1998) outburst, during which radio jets were observed. The results suggest a connection between hysteresis of states and major jet ejections, and it is possible that both of these are related to the evolution of the inner radius of the optically thick accretion disk.Comment: To appear in the Proceedings of COSPAR Colloquium "Spectra & Timing of Compact X-Ray Binaries," January 17-20, 2005, Mumbai, Indi

    A Systematic View of Ten New Black Hole Spins

    Full text link
    The launch of NuSTAR and the increasing number of binary black hole (BBH) mergers detected through gravitational wave (GW) observations have exponentially advanced our understanding of black holes. Despite the simplicity owed to being fully described by their mass and angular momentum, black holes have remained mysterious laboratories that probe the most extreme environments in the Universe. While significant progress has been made in the recent decade, the distribution of spin in black holes has not yet been understood. In this work, we provide a systematic analysis of all known black holes in X-ray binary systems (XB) that have previously been observed by NuSTAR, but have not yet had a spin measurement using the "relativistic reflection" method obtained from that data. By looking at all the available archival NuSTAR data of these sources, we measure ten new black hole spins: IGR J17454-2919 -- a=0.970.17+0.03a=0.97^{+0.03}_{-0.17}; GRS 1758-258 -- a=0.9910.019+0.007a=0.991^{+0.007}_{-0.019}; MAXI J1727-203 -- a=0.9860.159+0.012a=0.986^{+0.012}_{-0.159}; MAXI J0637-430 -- a=0.97±0.02a=0.97\pm0.02; Swift J1753.5-0127 -- a=0.9970.003+0.001a=0.997^{+0.001}_{-0.003}; V4641 Sgr -- a=0.860.06+0.04a=0.86^{+0.04}_{-0.06}; 4U 1543-47 -- a=0.980.02+0.01a=0.98^{+0.01}_{-0.02}; 4U 1957+11 -- a=0.950.04+0.02a=0.95^{+0.02}_{-0.04}; H 1743-322 -- a=0.980.02+0.01a=0.98^{+0.01}_{-0.02}; MAXI J1820+070 -- a=0.9880.028+0.006a=0.988^{+0.006}_{-0.028} (all uncertainties are at the 1σ1\sigma confidence level). We discuss the implications of our measurements on the entire distribution of stellar mass black hole spins in XB, and we compare that with the spin distribution in BBH, finding that the two distributions are clearly in disagreement. Additionally, we discuss the implications of this work on our understanding of how the "relativistic reflection" spin measurement technique works, and discuss possible sources of systematic uncertainty that can bias our measurements.Comment: 15 pages of text in main paper, 4 appendices including 30 figures and 6 tables (total of 54 pages). Submitted for publication in Ap

    The spectral energy distribution of quiescent black hole X-ray binaries: new constraints from Spitze

    Get PDF
    Among the various issues that remain open in the field of accretion onto black hole X-ray binaries (BHBs) is the question of how gas accretes at very low Eddington ratios, in the so-called quiescent regime. While there is general agreement that X-rays are produced by a population of high-energy electrons near the BH, there is controversy concerning the modeling of the contributions of inflowing versus outflowing particles and their relative energy budget. Recent Spitzer observations of three quiescent BHBs have shown evidence for excess emission with respect to the Rayleigh-Jeans tail of the companion star between 8-24 μm. We suggest that synchrotron emission from a partially self-absorbed outflow might be responsible for the observed mid-IR excess, in place of, or in addition to, thermal emission from circumbinary material. If so, then the jet synchrotron luminosity, integrated from radio to near-IR frequencies, exceeds the measured 2-10 keV luminosity by a factor of a few in these systems. In turn, the mechanical power stored in the jet exceeds the bolometric X-ray luminosity by at least 4 orders of magnitude. We compile the broadband spectral energy distribution (SED) of A0620-00, the lowest Eddington-ratio stellar mass BH with a known radio counterpart, by means of simultaneous radio, optical, and X-ray observations, and the archival Spitzer data. We are able to fit the SED of A0620-00 with a maximally jet-dominated model, in which the radio through the soft X-rays are dominated by synchrotron emission, while the hard X-rays are dominated by inverse Compton at the jet base. The fitted parameters land in a range of values reminiscent of the Galactic center supermassive black hole Sgr A*. Most notably, the inferred ratio of the jet acceleration rate to local cooling rates is 2 orders of magnitude weaker than higher luminosity, hard-state sources

    Truncation of the Inner Accretion Disk around a Black Hole at Low Luminosity

    Get PDF
    Most black hole binaries show large changes in X-ray luminosity caused primarily by variations in mass accretion rate. An important question for understanding black hole accretion and jet production is whether the inner edge of the accretion disk recedes at low accretion rate. Measurements of the location of the inner edge (Rin) can be made using iron emission lines that arise due to fluorescence of iron in the disk, and these indicate that Rin is very close to the black hole at high and moderate luminosities (near 1% of the Eddington luminosity, Ledd). Here, we report on X-ray observations of the black hole GX 339-4 in the hard state by Suzaku and the Rossi X-ray Timing Explorer (RXTE) that extend iron line studies to 0.14% Ledd and show that Rin increases by a factor of >27 over the value found when GX 339-4 was bright. The exact value of Rin depends on the inclination of the inner disk (i), and we derive 90% confidence limits of Rin > 35 Rg at i = 0 degrees and Rin > 175 Rg at i = 30 degrees. This provides direct evidence that the inner portion of the disk is not present at low luminosity, allowing for the possibility that the inner disk is replaced by advection- or magnetically-dominated accretion flows.Comment: Accepted for ApJ Letters, 5 pages, 4 figure

    The Power of Place in Citizen Science

    Get PDF
    These authors answer the question: What are the links between motivations for citizen science, connec­tions to place, and conservation decision outcomes

    Effect of Loading Configuration on Kinematics and Kinetics for Deadlift and Squat Exercises: Case Study in Modeling Exercise Countermeasure Device for Astronauts

    Get PDF
    This study compares squat and deadlift exercises performed with two different loading configurations: 1) on a novel single-cable resistance exercise countermeasure device (ECD) for spaceflight and 2) with free weights. The results compare joint kinematics and kinetics between different loading configurations for each exercise, and also between the two exercises for each loading configuration. Single-cable versions of the squat (using a harness) and deadlift (using a T-bar) performed on the Hybrid Ultimate Lifting Kit (HULK) ECD have significantly different sagittal plane joint angle kinematics (both peak angle and range of motion) as well as joint kinetics (both peak joint moment and joint impulse) vs. their free weight equivalents at the same load. Differences also exist in hip abduction and rotation. Overall, the single-cable configurations tend to reduce peak joint angles, ranges of motion, peak joint moment and joint impulse vs. free weights. A notable exception is the lumbar joint, which is more heavily loaded for single-cable squats vs. free weight squats. This may have implications for both training benefit and possible risk of injury. Deadlift and squat exercises work the lower body musculature in different ways, with the deadlift emphasizing hip and lumbar extension and the squat emphasizing knee extension. Based on these findings, we would advocate the use of both movements in the exercise prescriptions of astronaut crews on deep-space missions

    Rehabilitation System based on the Use of Biomechanical Analysis and Videogames through the Kinect Sensor

    Get PDF
    El presente artículo muestra la creación de un novedoso sistema para la rehabilitación física de pacientes con múltiples patologías, a través de dinámicas con videojuegos de ejercicio (exergames) y el análisis de los movimientos de los pacientes usando un software desarrollado. Este sistema está basado en el uso del sensor Kinect para ambos fines: divertir al paciente en su terapia a través de exergames y proporcionarle al especialista una herramienta para el registro y análisis de datos de captura de movimiento (MoCap) tomados a través del sensor Kinect y procesados utilizando análisis biomecánico mediante la transformación angular de Euler. Todo el sistema interactivo se encuentra instalado en un centro de rehabilitación y actualmente se realizan investigaciones con diferentes patologías (stroke, IMOC, trauma craneoencefálico, entre otros), los pacientes realizan sus sesiones con el sistema interactivo mientras el especialista registra los datos para un posterior análisis, el cual se realiza en un software creado para dicho fin. El software arroja gráficas de movimiento en los planos sagital, frontal y rotacional de 20 puntos distribuidos en el cuerpo. El sistema final es portable, no-invasivo, económico, de interacción natural con el paciente y de fácil implementación por parte del personal médico.  This paper presents development of a novel system for physical rehabilitation of patients with multiple pathologies, through dynamic with exercise videogames (exergames) and analysis of the movements of patients using developed software. This system is based on the use of the Kinect sensor for both purposes: amusing the patient in therapy through of specialist exergames and provide a tool to record and analyze MoCap data taken through the Kinect sensor and processed using biomechanical analysis through Euler angles. All interactive system is installed in a rehabilitation center and works with different pathologies (stroke, IMOC, craneoencephallic trauma, etc.), patients interact with the platform while the specialist records data for later analysis, which is performed by software designed for this purpose. The motion graphics are shown in the sagittal, frontal and rotationalplanefrom20 points distributed in the body. The final system is portable, non-invasive, inexpensive, natural interaction with the patient and easily implemented for medical purposes
    corecore