976 research outputs found

    CrY2H-seq: a massively multiplexed assay for deep-coverage interactome mapping.

    Get PDF
    Broad-scale protein-protein interaction mapping is a major challenge given the cost, time, and sensitivity constraints of existing technologies. Here, we present a massively multiplexed yeast two-hybrid method, CrY2H-seq, which uses a Cre recombinase interaction reporter to intracellularly fuse the coding sequences of two interacting proteins and next-generation DNA sequencing to identify these interactions en masse. We applied CrY2H-seq to investigate sparsely annotated Arabidopsis thaliana transcription factors interactions. By performing ten independent screens testing a total of 36 million binary interaction combinations, and uncovering a network of 8,577 interactions among 1,453 transcription factors, we demonstrate CrY2H-seq's improved screening capacity, efficiency, and sensitivity over those of existing technologies. The deep-coverage network resource we call AtTFIN-1 recapitulates one-third of previously reported interactions derived from diverse methods, expands the number of known plant transcription factor interactions by three-fold, and reveals previously unknown family-specific interaction module associations with plant reproductive development, root architecture, and circadian coordination

    Bile Acids Gate Dopamine Transporter Mediated Currents

    Get PDF
    Bile acids (BAs) are molecules derived from cholesterol that are involved in dietary fat absorption. New evidence supports an additional role for BAs as regulators of brain function. Sterols such as cholesterol interact with monoamine transporters, including the dopamine (DA) transporter (DAT) which plays a key role in DA neurotransmission and reward. This study explores the interactions of the BA, obeticholic acid (OCA), with DAT and characterizes the regulation of DAT activity via both electrophysiology and molecular modeling. We expressed murine DAT (mDAT) in Xenopus laevis oocytes and confirmed its functionality. Next, we showed that OCA promotes a DAT-mediated inward current that is Na+-dependent and not regulated by intracellular calcium. The current induced by OCA was transient in nature, returning to baseline in the continued presence of the BA. OCA also transiently blocked the DAT-mediated Li+-leak current, a feature that parallels DA action and indicates direct binding to the transporter in the absence of Na+. Interestingly, OCA did not alter DA affinity nor the ability of DA to promote a DAT-mediated inward current, suggesting that the interaction of OCA with the transporter is non-competitive, regarding DA. Docking simulations performed for investigating the molecular mechanism of OCA action on DAT activity revealed two potential binding sites. First, in the absence of DA, OCA binds DAT through interactions with D421, a residue normally involved in coordinating the binding of the Na+ ion to the Na2 binding site (Borre et al., J. Biol. Chem., 2014, 289, 25764\u201325773; Cheng and Bahar, Structure, 2015, 23, 2171\u20132181). Furthermore, we uncover a separate binding site for OCA on DAT, of equal potential functional impact, that is coordinated by the DAT residues R445 and D436. Binding to that site may stabilize the inward-facing (IF) open state by preventing the re-formation of the IF-gating salt bridges, R60-D436 and R445-E428, that are required for DA transport. This study suggests that BAs may represent novel pharmacological tools to regulate DAT function, and possibly, associated behaviors

    Resource heterogeneity and foraging behaviour of cattle across spatial scales

    Get PDF
    BackgroundUnderstanding the mechanisms that influence grazing selectivity in patchy environments is vital to promote sustainable production and conservation of cultivated and natural grasslands. To better understand how patch size and spatial dynamics influence selectivity in cattle, we examined grazing selectivity under 9 different treatments by offering alfalfa and fescue in patches of 3 sizes spaced with 1, 4, and 8 m between patches along an alley. We hypothesized that (1) selectivity is driven by preference for the forage species that maximizes forage intake over feeding scales ranging from single bites to patches along grazing paths, (2) that increasing patch size enhances selectivity for the preferred species, and that (3) increasing distances between patches restricts selectivity because of the aggregation of scale-specific behaviours across foraging scales.ResultsCows preferred and selected alfalfa, the species that yielded greater short-term intake rates (P < 0.0001) and greater daily intake potential. Selectivity was not affected by patch arrangement, but it was scale dependent. Selectivity tended to emerge at the scale of feeding stations and became strongly significant at the bite scale, because of differences in bite mass between plant species. Greater distance between patches resulted in longer patch residence time and faster speed of travel but lower overall intake rate, consistent with maximization of intake rate. Larger patches resulted in greater residence time and higher intake rate.ConclusionWe conclude that patch size and spacing affect components of intake rate and, to a lesser extent, the selectivity of livestock at lower hierarchies of the grazing process, particularly by enticing livestock to make more even use of the available species as patches are spaced further apart. Thus, modifications in the spatial pattern of plant patches along with reductions in the temporal and spatial allocation of grazing may offer opportunities to improve uniformity of grazing by livestock and help sustain biodiversity and stability of plant communities

    A Genome-Scale Resource for the Functional Characterization of Arabidopsis Transcription Factors

    Get PDF
    SummaryExtensive transcriptional networks play major roles in cellular and organismal functions. Transcript levels are in part determined by the combinatorial and overlapping functions of multiple transcription factors (TFs) bound to gene promoters. Thus, TF-promoter interactions provide the basic molecular wiring of transcriptional regulatory networks. In plants, discovery of the functional roles of TFs is limited by an increased complexity of network circuitry due to a significant expansion of TF families. Here, we present the construction of a comprehensive collection of Arabidopsis TFs clones created to provide a versatile resource for uncovering TF biological functions. We leveraged this collection by implementing a high-throughput DNA binding assay and identified direct regulators of a key clock gene (CCA1) that provide molecular links between different signaling modules and the circadian clock. The resources introduced in this work will significantly contribute to a better understanding of the transcriptional regulatory landscape of plant genomes

    Analysis of spatial relationships in three dimensions: tools for the study of nerve cell patterning

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Multiple technologies have been brought to bear on understanding the three-dimensional morphology of individual neurons and glia within the brain, but little progress has been made on understanding the rules controlling cellular patterning. We describe new matlab-based software tools, now available to the scientific community, permitting the calculation of spatial statistics associated with 3D point patterns. The analyses are largely derived from the Delaunay tessellation of the field, including the nearest neighbor and Voronoi domain analyses, and from the spatial autocorrelogram.</p> <p>Results</p> <p>Our tools enable the analysis of the spatial relationship between neurons within the central nervous system in 3D, and permit the modeling of these fields based on lattice-like simulations, and on simulations of minimal-distance spacing rules. Here we demonstrate the utility of our analysis methods to discriminate between two different simulated neuronal populations.</p> <p>Conclusion</p> <p>Together, these tools can be used to reveal the presence of nerve cell patterning and to model its foundation, in turn informing on the potential developmental mechanisms that govern its establishment. Furthermore, in conjunction with analyses of dendritic morphology, they can be used to determine the degree of dendritic coverage within a volume of tissue exhibited by mature nerve cells.</p

    Growth and CD4 patterns of adolescents living with perinatally acquired HIV worldwide, a CIPHER cohort collaboration analysis.

    Get PDF
    INTRODUCTION Adolescents living with HIV are subject to multiple co-morbidities, including growth retardation and immunodeficiency. We describe growth and CD4 evolution during adolescence using data from the Collaborative Initiative for Paediatric HIV Education and Research (CIPHER) global project. METHODS Data were collected between 1994 and 2015 from 11 CIPHER networks worldwide. Adolescents with perinatally acquired HIV infection (APH) who initiated antiretroviral therapy (ART) before age 10 years, with at least one height or CD4 count measurement while aged 10-17 years, were included. Growth was measured using height-for-age Z-scores (HAZ, stunting if <-2 SD, WHO growth charts). Linear mixed-effects models were used to study the evolution of each outcome between ages 10 and 17. For growth, sex-specific models with fractional polynomials were used to model non-linear relationships for age at ART initiation, HAZ at age 10 and time, defined as current age from 10 to 17 years of age. RESULTS A total of 20,939 and 19,557 APH were included for the growth and CD4 analyses, respectively. Half were females, two-thirds lived in East and Southern Africa, and median age at ART initiation ranged from 7 years in sub-Saharan African regions. At age 10, stunting ranged from 6% in North America and Europe to 39% in the Asia-Pacific; 19% overall had CD4 counts <500 cells/mm3 . Across adolescence, higher HAZ was observed in females and among those in high-income countries. APH with stunting at age 10 and those with late ART initiation (after age 5) had the largest HAZ gains during adolescence, but these gains were insufficient to catch-up with non-stunted, early ART-treated adolescents. From age 10 to 16 years, mean CD4 counts declined from 768 to 607 cells/mm3 . This decline was observed across all regions, in males and females. CONCLUSIONS Growth patterns during adolescence differed substantially by sex and region, while CD4 patterns were similar, with an observed CD4 decline that needs further investigation. Early diagnosis and timely initiation of treatment in early childhood to prevent growth retardation and immunodeficiency are critical to improving APH growth and CD4 outcomes by the time they reach adulthood

    The epidemiology of adolescents living with perinatally acquired HIV: A cross-region global cohort analysis

    Get PDF
    Background Globally, the population of adolescents living with perinatally acquired HIV (APHs) continues to expand. In this study, we pooled data from observational pediatric HIV cohorts and cohort networks, allowing comparisons of adolescents with perinatally acquired HIV in “real-life” settings across multiple regions. We describe the geographic and temporal characteristics and mortality outcomes of APHs across multiple regions, including South America and the Caribbean, North America, Europe, sub-Saharan Africa, and South and Southeast Asia. Methods and findings Through the Collaborative Initiative for Paediatric HIV Education and Research (CIPHER), individual retrospective longitudinal data from 12 cohort networks were pooled. All children infected with HIV who entered care before age 10 years, were not known to have horizontally acquired HIV, and were followed up beyond age 10 years were included in this analysis conducted from May 2016 to January 2017. Our primary analysis describes patient and treatment characteristics of APHs at key time points, including first HIV-associated clinic visit, antiretroviral therapy (ART) start, age 10 years, and last visit, and compares these characteristics by geographic region, country income group (CIG), and birth period. Our secondary analysis describes mortality, transfer out, and lost to follow-up (LTFU) as outcomes at age 15 years, using competing risk analysis. Among the 38,187 APHs included, 51% were female, 79% were from sub-Saharan Africa and 65% lived in low-income countries. APHs from 51 countries were included (Europe: 14 countries and 3,054 APHs; North America: 1 country and 1,032 APHs; South America and the Caribbean: 4 countries and 903 APHs; South and Southeast Asia: 7 countries and 2,902 APHs; sub-Saharan Africa, 25 countries and 30,296 APHs). Observation started as early as 1982 in Europe and 1996 in sub-Saharan Africa, and continued until at least 2014 in all regions. The median (interquartile range [IQR]) duration of adolescent follow-up was 3.1 (1.5–5.2) years for the total cohort and 6.4 (3.6–8.0) years in Europe, 3.7 (2.0–5.4) years in North America, 2.5 (1.2–4.4) years in South and Southeast Asia, 5.0 (2.7–7.5) years in South America and the Caribbean, and 2.1 (0.9–3.8) years in sub-Saharan Africa. Median (IQR) age at first visit differed substantially by region, ranging from 0.7 (0.3–2.1) years in North America to 7.1 (5.3–8.6) years in sub-Saharan Africa. The median age at ART start varied from 0.9 (0.4–2.6) years in North America to 7.9 (6.0–9.3) years in sub-Saharan Africa. The cumulative incidence estimates (95% confidence interval [CI]) at age 15 years for mortality, transfers out, and LTFU for all APHs were 2.6% (2.4%–2.8%), 15.6% (15.1%–16.0%), and 11.3% (10.9%–11.8%), respectively. Mortality was lowest in Europe (0.8% [0.5%–1.1%]) and highest in South America and the Caribbean (4.4% [3.1%–6.1%]). However, LTFU was lowest in South America and the Caribbean (4.8% [3.4%–6.7%]) and highest in sub-Saharan Africa (13.2% [12.6%–13.7%]). Study limitations include the high LTFU rate in sub-Saharan Africa, which could have affected the comparison of mortality across regions; inclusion of data only for APHs receiving ART from some countries; and unavailability of data from high-burden countries such as Nigeria. Conclusion To our knowledge, our study represents the largest multiregional epidemiological analysis of APHs. Despite probable under-ascertained mortality, mortality in APHs remains substantially higher in sub-Saharan Africa, South and Southeast Asia, and South America and the Caribbean than in Europe. Collaborations such as CIPHER enable us to monitor current global temporal trends in outcomes over time to inform appropriate policy responses

    Control of Bone Mass and Remodeling by PTH Receptor Signaling in Osteocytes

    Get PDF
    Osteocytes, former osteoblasts buried within bone, are thought to orchestrate skeletal adaptation to mechanical stimuli. However, it remains unknown whether hormones control skeletal homeostasis through actions on osteocytes. Parathyroid hormone (PTH) stimulates bone remodeling and may cause bone loss or bone gain depending on the balance between bone resorption and formation. Herein, we demonstrate that transgenic mice expressing a constitutively active PTH receptor exclusively in osteocytes exhibit increased bone mass and bone remodeling, as well as reduced expression of the osteocyte-derived Wnt antagonist sclerostin, increased Wnt signaling, increased osteoclast and osteoblast number, and decreased osteoblast apoptosis. Deletion of the Wnt co-receptor LDL related receptor 5 (LRP5) attenuates the high bone mass phenotype but not the increase in bone remodeling induced by the transgene. These findings demonstrate that PTH receptor signaling in osteocytes increases bone mass and the rate of bone remodeling through LRP5-dependent and -independent mechanisms, respectively
    corecore