136 research outputs found

    RecA

    Get PDF

    Second harmonic generation response by gold nanoparticles at the polarized water/2-octanone interface: from dispersed to aggregated particles

    Get PDF
    Gold nanoparticles with a diameter of approximately 20 nm have been observed at the polarized water/2-octanone interface by the nonlinear optical technique of second harmonic generation. Electric field induced adsorption of the gold particles at this liquid/liquid interface is clearly observed and confirms that these are negatively charged. The process is quasi-reversible at high potential sweep rates, but aggregation at the interface is observed at slower sweep rates through the loss of the nonlinear optical signal. The time evolution of the second harmonic signal is also reported during potential step experiments. After a rapid increase due to adsorption, a continuous decrease in the nonlinear optical signal intensity is observed due to aggregation of the particles into large islands at the interface. Diffusion of these large islands at the interface was observed for a longer timescale through large signal fluctuations

    Ultrasound Effectiveness of Steroid Injection for hand Psoriatic Dactylitis: Results from a Longitudinal Observational Study

    Get PDF
    Introduction: To assess clinical and ultrasound effectiveness of steroid injection (local treatment, LT) into the digital flexor tendon sheath for the treatment of psoriatic dactylitis compared to systemic treatment (ST) alone. Methods: In this observational, multicentre, prospective study, 88 cases of symptomatic hand dactylitis were evaluated clinically and sonographically by high-frequency ultrasound (US) probe in both greyscale (GS) and power Doppler (PD). The presence of flexor tenosynovitis (FT), soft tissue oedema (STO), peritendon extensor inflammation and synovitis was assessed (including DACtylitis glObal Sonographic—DACTOS—score) before treatment, at 1-month (T1) and 3-months (T3) follow-up. LT was proposed to all patients. Patients refusing LT were treated with oral NSAIDs. Patients continued the same baseline csDMARDs and/or corticosteroid therapy during the whole follow-up period. US response was defined for DACTOS score < 3 and US remission for DACTOS score = 0. Results: At T3 evaluation the ST group showed a significantly higher persistence (grade > 1) of FT and STO (p < 0.001 for all) and MCP synovitis (p = 0.001). US remission was achieved only in the LT group (at T3 31% vs. 0, p < 0.001). The percentage of patients with DACTOS < 3 was significantly greater in the LT group compared with ST group, at both T1 (49% vs. 5%, p < 0.001) and T3 evaluation (76% vs. 7%, p < 0.001). In multiple conditional logistic regression analysis, the only factor associated with US remission was LT (T3 odds ratio = 41.21, p < 0.001). Conclusions: US confirmed the effectiveness of steroid injection for dactylitis by demonstrating that it involves the resolution of extra-articular inflammation, in particular FT and STO

    Single-molecule studies of the stringency factors and rates governing the polymerization of RecA on double-stranded DNA

    Get PDF
    RecA is a key protein in homologous recombination. During recombination, one single-stranded DNA (ssDNA) bound to site I in RecA exchanges Watson–Crick pairing with a sequence-matched ssDNA that was part of a double-stranded DNA molecule (dsDNA) bound to site II in RecA. After strand exchange, heteroduplex dsDNA is bound to site I. In vivo, direct polymerization of RecA on dsDNA through site I does not occur, though it does in vitro. The mechanisms underlying the difference have been unclear. We use single-molecule experiments to decouple the two steps involved in polymerization: nucleation and elongation. We find that elongation is governed by a fundamental clock that is insensitive to force and RecA concentration from 0.2 and 6 µM, though rates depend on ionic conditions. Thus, we can probe nucleation site stability by creating nucleation sites at high force and then measuring elongation as a function of applied force. We find that in the presence of ATP hydrolysis a minimum force is required for polymerization. The minimum force decreases with increasing RecA or ATP concentrations. We propose that force reduces the off-rate for nucleation site binding and that nucleation site stability is the stringency factor that prevents in vivo polymerization

    RecO-mediated DNA homology search and annealing is facilitated by SsbA

    Get PDF
    Bacillus subtilis RecO plays a central role in recombinational repair and genetic recombination by (i) stimulating RecA filamentation onto SsbA-coated single-stranded (ss) DNA, (ii) modulating the extent of RecA-mediated DNA strand exchange and (iii) promoting annealing of complementary DNA strands. Here, we report that RecO-mediated strand annealing is facilitated by cognate SsbA, but not by a heterologous one. Analysis of non-productive intermediates reveals that RecO interacts with SsbA-coated ssDNA, resulting in transient ternary complexes. The self-interaction of ternary complexes via RecO led to the formation of large nucleoprotein complexes. In the presence of homology, SsbA, at the nucleoprotein, removes DNA secondary structures, inhibits spontaneous strand annealing and facilitates RecO loading onto SsbA–ssDNA complex. RecO relieves SsbA inhibition of strand annealing and facilitates transient and random interactions between homologous naked ssDNA molecules. Finally, both proteins lose affinity for duplex DNA. Our results provide a mechanistic framework for rationalizing protein release and dsDNA zippering as coordinated events that are crucial for RecA-independent plasmid transformation

    Polynucleotide phosphorylase exonuclease and polymerase activities on single-stranded DNA ends are modulated by RecN, SsbA and RecA proteins

    Get PDF
    Bacillus subtilis pnpA gene product, polynucleotide phosphorylase (PNPase), is involved in double-strand break (DSB) repair via homologous recombination (HR) or non-homologous end-joining (NHEJ). RecN is among the first responders to localize at the DNA DSBs, with PNPase facilitating the formation of a discrete RecN focus per nucleoid. PNPase, which co-purifies with RecA and RecN, was able to degrade single-stranded (ss) DNA with a 3′ → 5′ polarity in the presence of Mn2+ and low inorganic phosphate (Pi) concentration, or to extend a 3′-OH end in the presence dNDP·Mn2+. Both PNPase activities were observed in evolutionarily distant bacteria (B. subtilis and Escherichia coli), suggesting conserved functions. The activity of PNPase was directed toward ssDNA degradation or polymerization by manipulating the Pi/dNDPs concentrations or the availability of RecA or RecN. In its dATP-bound form, RecN stimulates PNPase-mediated polymerization. ssDNA phosphorolysis catalyzed by PNPase is stimulated by RecA, but inhibited by SsbA. Our findings suggest that (i) the PNPase degradative and polymerizing activities might play a critical role in the transition from DSB sensing to end resection via HR and (ii) by blunting a 3′-tailed duplex DNA, in the absence of HR, B. subtilis PNPase might also contribute to repair via NHEJ
    corecore