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Abstract

The RecA filament formed on double-stranded (ds) DNA is proposed to be a functional state analogous to that generated
during the process of DNA strand exchange. RecA polymerization and de-polymerization on dsDNA is governed by multiple
physiological factors. However, a comprehensive understanding of how these factors regulate the processes of
polymerization and de-polymerization of RecA filament on dsDNA is still evolving. Here, we investigate the effects of
temperature, pH, tensile force, and DNA ends (in particular ssDNA overhang) on the polymerization and de-polymerization
dynamics of the E. coli RecA filament at a single-molecule level. Our results identified the optimal conditions that permitted
spontaneous RecA nucleation and polymerization, as well as conditions that could maintain the stability of a preformed
RecA filament. Further examination at a nano-meter spatial resolution, by stretching short DNA constructs, revealed a
striking dynamic RecA polymerization and de-polymerization induced saw-tooth pattern in DNA extension fluctuation. In
addition, we show that RecA does not polymerize on S-DNA, a recently identified novel base-paired elongated DNA
structure that was previously proposed to be a possible binding substrate for RecA. Overall, our studies have helped to
resolve several previous single-molecule studies that reported contradictory and inconsistent results on RecA nucleation,
polymerization and stability. Furthermore, our findings also provide insights into the regulatory mechanisms of RecA
filament formation and stability in vivo.
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Introduction

In Escherichia coli, the formation of a RecA filament on single-

stranded DNA (ssDNA) is a crucial step in the processing of DSB

ends during recombinational DNA repair [1]. RecA filament,

formed in the presence of ATP or ATP-analogs and other co-

factors, serves as an active intermediate during recombinational

DNA repair [1,2]. The formation of the RecA filament

encompasses two distinct steps: a slower nucleation step and a

faster polymerization step. The latter was shown to occur

primarily in a 5’ to 3’ direction on ssDNA [1–3], while recent

studies suggest that 3’ to 5’ polymerization can also occur under

certain conditions [4–7]. RecA filament is a dynamic structure

under conditions of ATP hydrolysis, which is subject to

competition between polymerization and de-polymerization pro-

cesses [5,8,9]. RecA monomer contains two distinct DNA binding

sites. During RecA-catalyzed DNA strand exchange, RecA binds

to ssDNA through its primary ssDNA binding site to form a

nucleoprotein filament, which interacts with dsDNA weakly via its

secondary site. Once sequence homology is found, RecA aligns

homologous sequences, then the strands invade each other and

begin the process of strand exchange [1,10].

Although RecA primarily polymerizes on ssDNA, several

studies have shown that it can also polymerize on dsDNA

[8,11–16]. Importantly, the RecA filament on dsDNA is proposed

to be a functional state comparable to that generated during DNA

strand exchange [2]. Therefore, understanding the properties of

the RecA filament formed on dsDNA in physiologically relevant

conditions might provide insights into the overall processes of

homologous recombination.

Previously, molecular events underlying polymerization and de-

polymerization of RecA on dsDNA has been investigated using

single-molecule manipulation techniques [11–15]. Some studies

have shown net RecA polymerization on dsDNA at low tensile

force of several pico Newtons (pN) [11,12,15], while others have

reported that RecA filaments were unstable at low force which

resulted in net RecA de-polymerization [14]. In studies that

showed net RecA polymerization at low force, an initial DNA

overstretching transition at large force (,65 pN) was often

required to promote RecA nucleation [12,14,15], while others

reported spontaneous nucleation at low force [8,11,13].

To date, the causes of these contradictions still remain unclear.

In addition, recent experiments demonstrated that DNA over-

stretching, which was found to facilitate RecA polymerization on

dsDNA [12,15], in fact involves two distinct DNA structural

transitions, one to ssDNA through strand-separation and the other

to a non-melted elongated novel DNA structure termed as the S-

DNA, whose selection can be tuned by changing base-pair stability

through tuning temperature, ionic-strength, and GC-content [17–
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20]. An interesting question is whether the DNA overstretching

assists in RecA polymerization through one or both of the

structural transitions.

RecA polymerization involves formation of an initial nucleation

site with several RecA monomers, which is followed by sequential

adding new RecA monomers to the 3’ end of the filament [5].

ATP hydrolysis catalyzed RecA de-polymerization, which primar-

ily occurs at the 5’ end, is a cooperative process and each step

involves dissociation of several RecA monomers [3,5]. As only one

or a few RecA monomers are involved in each of these critical

steps of RecA polymerization and de-polymerization, small DNA

extension changes at the nanometer range occur. In previous

single-DNA stretching studies of RecA polymerization and de-

polymerization, long DNA tethers of a few microns in length were

used [11–15]. The large longitude conformational fluctuation due

to the use of long DNA prevented the previous studies from

observing the detailed dynamics of competition between polymer-

ization and de-polymerization.

Although the basis for these conflicting observations is unclear,

it is possible that the use of different experimental conditions in the

aforementioned studies might have contributed to the observed

differences. In this paper, we systematically examined this premise

at single dsDNA molecule level using magnetic tweezers.

Specifically, we investigated the dynamics and regulation of the

competition between RecA polymerization and de-polymerization

on dsDNA by temperature, pH, salt, tensile force, dsDNA ends,

and the role of DNA overstretching in single-DNA stretching

experiments. The optimal conditions that permitted spontaneous

RecA nucleation and polymerization, as well as conditions that

could maintain the stability of a preformed RecA filament, were

identified, which provided a consensus understanding of the

previous contradictory experimental findings. Further, the detailed

competition between polymerization and de-polymerization was

monitored in real-time at a nano-meter scale.

Materials and Methods

DNA constructs, buffer solutions and protein
Five DNA constructs were used in our experiments: (1) 48,502

bp l-DNA (New England Biolabs) end-labeled with a biotin and a

thiol groups on the two opposite strands, (2) a 595 bp DNA with

one end labeled with thiol group and the other end sealed by a

short DNA hairpin labeled with biotin, (3) an 876 bp DNA that

was constructed by ligating two GC rich handles to the 571 bp

DNA construct (GC% = 53%). One GC-rich DNA handle was

biotin labeled 153 bp DNA (GC% = 61%) and the other was thiol

labeled 152 bp DNA (GC% = 65%), (4) an , 600 bp DNA whose

both end were sealed by short DNA hairpin labeled with biotin, (5)

3’ or 5’ tailed DNA by adding 12 nt ssDNA to the 3’ end or the 5’

end of the one-end looped 595 bp DNA construct. In experiments

where 1 mM ATP was used, 1x ATP regeneration system was

included to maintain ATP levels at ,1 mM. E. coli RecA protein

was purchased from New England BioLabs, USA or purified as

previously described [21].

Magnetic tweezers measurements
In this study a vertical magnetic tweezers setup was used to

stretch the short DNA constructs. The thiol end of the DNA was

covalently fixed to a sulfo-SMCC-coated (Sigma) coverglass, and

the biotin end of the DNA was fixed to a streptavidin coated 2.8 –

mm paramagnetic bead (Dynal M-280, Invitrogen). The bead

position in the focal plane was determined by the self-correlation

method at a resolution of , 2 nm [22]. The bead position

perpendicular to the focal plane was determined at resolution

,2 nm by analyzing the diffraction pattern of the defocused bead

image at different defocusing planes [22]. Additional details

concerning the experimental set up can be found in a previously

published report [23].

Forces were applied to the l-DNA by a transverse magnetic

tweezers setup [24]. The thiol end of the DNA was fixed to a sulfo-

SMCC (Sigma) labeled edge of a cover glass, and the other end

was labeled with biotin and was attached to a streptavidin coated

2.8 –mm paramagnetic bead (Dynal M-280, Invitrogen) to achieve

high force. The DNA was placed inside a narrow flow channel so

that the buffer could be conveniently replaced. A permanent

magnet outside the channel applied forces from 0.01 pN up to 100

pN to the paramagnetic bead in the focal plane, and the extension

of DNA was determined to be the distance from the bead to the

edge of the cover glass in the force direction. The DNA was

ascertained to be a single DNA tether as it underwent DNA

overstretching transition at , 65 pN that led to DNA elongation

by , 1.7 fold [25,26].

Temperature control
The temperature was controlled by an objective heater system

(Bioptech Heater System for Olympus UPLFN 100x Objective) in

the vertical magnetic tweezers or a Linkam Warm Stage

Controller-MC60 in the transverse magnetic tweezers setups.

Additional details of DNA constructs, labelling, and ATP

regeneration system, the force response and force calibration for

short DNA tethers can be found in Supplementary Data.

Results

Temperature and pH switch the balance between
polymerization and de-polymerization over physiological
ranges

As in the previous studies, different temperature and pH values

were used [8,11–15], we first investigated the effects of these two

factors on the polymerization of RecA on dsDNA.

When we performed experiments under reaction conditions, i.

e., 20 mM Tris (pH 7.4) 1 mM RecA, 50 mM KCl, 10 mM

MgCl2, 1 mM ATP and 1x ATP regeneration system at 24uC, we

observed that RecA was unable to polymerize along dsDNA over a

wide range of force up to 48.9 pN, indicated by constant

extensions over the respective DNA holding times at correspond-

ing forces (Figure 1). To test whether polymerization can proceed

with a pre-existing nucleation site, we applied large force of , 72.8

pN to the DNA. At this force, DNA underwent an overstretching

transition that led to elongation of the DNA backbone by , 1.7-

fold [26], as indicated in the figure panel of Figure 1A (extension at

beginning of data points in red). RecA polymerization occurred at

, 72.8 pN, indicated by progressive shortening of DNA extension

(red, Figure 1A). The shortening of DNA extension can be

explained by a dynamic change from the overstretched DNA (,
1.7 times the B-DNA contour length [25,26]) to the shorter

extension of a fully polymerized RecA filament (, 1.5 times B-

DNA contour length [11,12,14]). The extension difference

between the overstretched DNA and the RecA filament is roughly

(1.7–1.5)60.34 nm/bp < 0.07 nm/bp.

After holding the DNA at , 72.8 pN for , 80 sec, an extension

reduction of , 300 nm occurred, corresponding to , 4,286 bp of

dsDNA covered by RecA filaments. To see whether this partially

polymerized RecA filament was stable and whether RecA

polymerization could continue at low force, we dropped the force

to , 6.2 pN. Immediately after the force drop, the extension is ,
777 nm longer than B-DNA, confirming the existence of a large

patch of partially polymerized RecA filament on the DNA. As the
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extension difference between the B-DNA and the RecA filament is

roughly (1.5–1.0)60.34 nm/bp < 0.17 nm/bp, the result

indicated that , 4,571 bp of dsDNA was covered by RecA

filament. The sizes of the partially polymerized RecA filament

estimated at the two forces are consistent with each other within

10 percent relative error.

After the force was dropped to , 6.2 pN, progressive shortening

of DNA extension was observed until it returned back to the

original B-DNA extension, indicating RecA de-polymerization.

This result is fully consistent with the finding of Feinstein et al. [14]

that pre-existing RecA filament formed on dsDNA was unstable at

forces below 30 pN in similar buffer solutions. These results were

confirmed by multiple independent experiments. Figure S1 shows

another typical experiment which is similar to results in Figure 1A.

To examine the effect of temperature, the experiment was

repeated at 37uC (other solution conditions remain unchanged). In

Figure 1B, we show that, after initial RecA nucleation facilitated

by the onset of DNA overstretching transition at 58.8 pN,

progressive RecA polymerization occurred after force was

dropped to 6.2 pN. In about 600 seconds, the extension of DNA

was about 21 mm, which is ,1.3 times the B-DNA contour length.

Over the following 1,200 seconds, the extension was still growing

with a much slower rate, which nearly reached a steady state. This

result is consistent with the progressive growth phase and the long-

lived stationary phase at low force at the same temperature

reported by Shivashankar et al. [11].

Results in Figure 1A and Figure 1B together with previous

studies by Shivashankar et al. [11] and Feinstein et al. [14]

demonstrated that temperature is an essential factor in the

regulation of the formation of RecA filament as well as its stability

in the presence of ATP and magnesium. Although DNA

overstretching could facilitate the initial nucleation of RecA, we

note that it was not necessary at this temperature. In an

independent experiment we observed spontaneous nucleation

and RecA polymerization at 37uC at below 10 pN without DNA

overstretching (Figure S2).

It has been reported that RecA filaments experience dynamic

instability during ATP-hydrolysis, caused by the unstable state

when RecA is associated with ADP [1,3]. Utilizing this property,

we washed RecA bound on the same dsDNA tether using solution

containing 1 mM RecA, 50 mM KCl, 10 mM MgCl2, 1 mM

(ATP:ADP = 1:5) at the same temperature. As shown in Figure

Figure 1. Effects of temperature and pH on the formation and
stability of RecA filament. (A) Time trace of RecA polymerization and
de-polymerization in a l-DNA in 1 mM RecA, 50 mM KCl, 10 mM MgCl2,
1 mM ATP, 1x ATP regeneration system, pH 7.4, and 24uC, at different
forces indicated by different colors. Progressive polymerization was
observed at ,72.8 pN after DNA overstretching indicated by shortening
in DNA extension (red allow), while de-polymerization was observed
when force was decreased to , 6.2 pN (blue arrow). (B) Following the
complete de-polymerization in (A), time trace was obtained on the
same DNA at 37uC (other conditions remained unchanged). Progressive
polymerization was observed at ,6.2 pN (blue data points) after
initiation with DNA overstretching transition by ,58.8 pN for a short
time duration (red arrow). (C) Time trace of de-polymerization of the
RecA nucleoprotein filament formed in (B) after introduction of 1 mM
mixture of ATP and ADP (ATP:ADP = 1:5) (other conditions remained
unchanged) at , 6.2 pN. (D) Time trace of spontaneous RecA
polymerization on a different l-DNA at pH 6.2, 24uC, and 9.5 pN
without initiation by DNA overstretching. (E) Time trace of de-
polymerization of RecA nucleoprotein filament formed in (D) after pH
was changed to 7.4 with 1 mM ATP (blue and dark grey data at different
forces) and with 1 mM ADP (green data). The noisy data in (C–E) in the
shadowed areas were recorded during buffer exchanging.
doi:10.1371/journal.pone.0066712.g001
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1C, after the solution was introduced, net disassembly of the RecA

filament started in a stepwise manner until DNA completely

returned to the B-DNA state within , 500 sec, which allowed to

reuse the DNA for further investigations.

In addition to temperature, different pH values were also used

in a number of previous studies; therefore, we examined the effect

of pH on the formation of RecA filament and stability at 24uC. In

Figure 1D, in reaction conditions containing 20 mM MES

(pH 6.2), 1 mM RecA, 50 mM KCl, 10 mM MgCl2, 1 mM

ATP, 1x ATP regeneration system, we show that spontaneous

RecA nucleation and polymerization started while the protein was

introduced without assistance of DNA overstretching transition.

However, when pH was raised to 7.4, the nearly fully polymerized

RecA filament was rapidly de-polymerized (Figure 1E). Similarly,

Figure S3 shows spontaneous nucleation and filament formation at

below 10 pN under the same experimental condition as those used

in Figure 1D.

The results depicted in Figure 1A–E demonstrate that RecA

filament formation and stability on dsDNA is regulated by

temperature and pH. At higher temperature and lower pH values,

RecA filament is stable and can polymerize at low force, while at

lower temperature and higher pH, RecA filament is unstable at

low force resulting in net de-polymerization of pre-existing RecA

filaments. Under conditions when net RecA polymerization was

favored, initial nucleation could be greatly facilitated, although not

absolutely necessary, by DNA overstretching transition.

Detailed dynamics of RecA polymerization and de-
polymerization

The data presented in the previous section have shown that

temperature and pH as well as force can fine-tune the balance

between RecA polymerization and de-polymerization on dsDNA,

which led to an increase in DNA extension in the polymerization

phase and decrease in the de-polymerization phase at below DNA

overstretching transition force. Next, we sought to examine the

competition dynamics using short 595 bp DNA that significantly

improves signal-to-noise ratio by suppressing the longitude

fluctuation of DNA [23]. Due to the use of the short DNA tether

and re-orientation of bead during force change, the absolute DNA

Figure 2. Detailed dynamics of short RecA filaments in different KCl concentrations. (A–B) Time traces of polymerization and de-
polymerization of RecA nucleoprotein filament on a 595 bp dsDNA in 1 mM RecA 1 mM ATP, 1x ATP regeneration system, 24uC, pH 7.4, with 50 mM
KCl (A) first then 150 mM KCl (B) next. Data in the left panels were recorded at different forces indicated by different colors. Right panels show
dynamics of the competition between polymerization and de-polymerization under a constant force of ,34.1 pN. Inset shows the sketch of the 595
bp DNA containing one closed end and one open end.
doi:10.1371/journal.pone.0066712.g002
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extension and the extension change at different forces cannot be

accurately determined. However, at the same force, the bead

orientation is fixed and the extension change at the constant forces

can be accurately measured (Methods S1). Therefore, on short

DNA tethers we only focus on extension changes at constant

forces.

The data in Figure 2A–B were generated using the same 595 bp

DNA tether in buffered solutions containing 10 mM MgCl2,

20 mM Tris-HCl (pH 7.4), 1 uM RecA, 1 mM ATP, 1x ATP

regeneration system, and either 50 mM or 150 mM KCl, at 24uC,

respectively. As RecA filament is unstable at low force 24uC; DNA

overstretching transition was provided to abet RecA polymeriza-

tion. As one end of the DNA is topologically closed, potential

complete strand-dissociation during DNA overstretching was

avoided. After RecA polymerization nearly completed, the force

was decreased and the DNA extension dynamics was recorded at

constant forces over long time.

Figure 2A, left panel shows the time course of the experiment

from overstretching assisted polymerization to de-polymerization

at lower force values. RecA was fully polymerized at force greater

than 63.3 pN. The right panel shows the extension dynamics at a

constant force of ,34.1 pN over , 380 seconds. Interestingly, we

observed saw-tooth dynamics pattern, indicated by stochastic

abrupt extension drops with various sizes up to , 30 nm and very

slow extension elongation processes between successive extension

drops. At this force, the de-polymerization (abrupt extension

drops) only slightly out-competed the polymerization (slow

extension elongation processes). We note that the kinetics of

decrease in DNA extension from , 280 nm to , 190 nm required

an extended time period of . 300 seconds. At lower force values,

further net RecA de-polymerization occurred and the DNA

extension returned to the B-DNA extension after the de-

polymerization was completed.

To examine whether the saw-tooth dynamics pattern is sensitive

to salt concentration, we increased the KCl concentration to

150 mM (the other factors remained unchanged) and repeated the

experiments with the same DNA (Figure 2B). Similar to Figure 2A,

the polymerization was assisted by the onset DNA overstretching

transition force of ,61.6 pN. The force was subsequently reduced

to 34.1 pN. Consistent with the behavior in the presence of

50 mM KCl, we observed dynamic de-polymerization of RecA, as

indicated by stochastic abrupt extension drops with various sizes

up to , 30 nm. However, apparent re-polymerization events after

de-polymerization events were much less often. After each de-

polymerization step, DNA extension often remained at a plateau

until the next de-polymerization event. Due to the significantly

reduced re-polymerization activity in 150 mM KCl compared to

that in 50 mM KCl, the de-polymerization process predominated,

resulting in much faster net de-polymerization (required only 100

seconds to drop from ,280 nm to , 200 nm). Figure S4(A-B)

shows another typical independent experiment that demonstrated

consistent effects of KCl concentration on the stability of RecA

nucleoprotein filament formed on dsDNA.

Next, we re-investigated the effects of temperature using short

DNA. Figure 3A shows the extension time course of fully

polymerized RecA filament at different decreased forces in

50 mM KCl, 10 mM MgCl2, at 37uC. At , 40 pN, saw-tooth

extension dynamics was observed but without apparent net de-

polymerization over the observation time period. Further, after we

reduced the force to a much lower value of , 3 pN, saw-tooth

dynamic fluctuation still remained without net de-polymerization.

The average extension was ,100 nm longer than the B-DNA

extension, corresponding to ,50% DNA elongation suggesting a

fully polymerized RecA filament.

After removal of RecA by 5 mM ADP, the experiment was

repeated at 24uC using the same DNA at 24uC. Like in Figure 2A,

we observed saw-tooth dynamic extension fluctuation at , 40 pN

(Figure 3B). However, at lower forces, net de-polymerization

occurred. Consistent with the observations shown in Figure 1A

and Figure 2A, rapid net de-polymerization manifested at , 3 pN

until the DNA extension returned to the B-DNA extension. Effects

of pH were also re-examined using short DNA tethers at 24uC,

which revealed stable RecA polymerization at , 10 pN in pH 6.1

(Figure S5).

The results obtained from stretching short DNA shown in

Figures 2–3 and Figure S5 consistently demonstrated that

formation of stable RecA filament at low force is favored at

37uC or pH 6.1, which becomes unstable when temperature was

decreased to 24uC at pH 7.4. In addition, due to the significantly

Figure 3. Effects of temperature on short RecA filaments. (A–B)
Time traces of polymerization and de-polymerization of RecA nucleo-
protein filament on another 595 bp dsDNA tether in 1 mM RecA 1 mM
ATP, 1x ATP regeneration system, 50 mM KCl, 10 mM MgCl2, pH 7.4, at
37uC (A) first then 24uC (B) next. Different colors indicate data at
different forces. The results revealed stable RecA nucleoprotein filament
at 37uC and unstable RecA nucleoprotein filament at 24uC at low force,
consistent with results obtained on large l-DNA (Figure 2A–B).
doi:10.1371/journal.pone.0066712.g003
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increased signal-to-noise ratio by stretching short DNA tethers, a

novel dynamic saw-tooth pattern in DNA extension time traces

was observed. This saw-tooth pattern clearly indicates that de-

polymerization of RecA in a dsDNA is a highly stochastic abrupt

process involving stepwise extension reduction in a wide range

roughly 5 – 40 nm, indicating a highly cooperative de-

polymerization process involving large patches of RecA filament

covering 10 – 80 bp DNA segments. In contrast to the highly

stochastic cooperative de-polymerization process, the polymeriza-

tion is a much slower progressive process that does not involve

clear steps that could be determined by our instrument.

Single-stranded DNA produced during the DNA
overstretching transition facilitates RecA polymerization
on dsDNA

Many previous studies of RecA polymerization on dsDNA

utilized DNA overstretching transition at , 65 pN, which leads to

DNA elongation by , 1.7-fold, to assist RecA nucleation and

polymerization. Yet, the mechanism of how DNA overstretching

facilitates the nucleation step remains unclear. Recent studies have

demonstrated that, torsion-unconstrained DNA undergoes three

different structural re-organizations during DNA overstretching: (i)

‘‘peeling’’ apart of dsDNA to produce a peeled-ssDNA strand

under tension while the other strand coils, (ii) ‘‘inside-strand-

separation’’ of dsDNA to two parallel ssDNA strands that share

tension (melting bubble), and (iii) ‘‘B-to-S’’ transition to a novel

base paired dsDNA, termed ‘‘S-DNA’’ [17–20,27]. Among the

three transitions, the strand peeling and the B-to-S transition are

predominant in physiological solution conditions at similar force of

, 65 pN, which can co-exist under certain solution conditions

[17–20,27]. The selection of the B-to-S transition and the strand-

peeling transition depends on factors that change DNA base pair

stability [17–20,27]. At higher base pair stability (high salt

concentration, low temperature, high GC percentage), the B-to-

S transition is selected over the strand-peeling transition [17–

20,27]. The question waiting to be addressed is whether the

ssDNA produced in strand peeling transition or the S-DNA

produced in B-to-S transition assisted RecA nucleation.

RecA is known to bind ssDNA with high affinity [1]. Therefore,

one intrinsic mechanism would be that ssDNA produced through

strand-peeling transition or the inside-strand separation promotes

RecA nucleation on the released ssDNA and polymerize along

ssDNA into the dsDNA region. For DNA with open ends (the

DNA used here) or with nicks, the strand-peeling transition

predominates compared to the inside-strand separation [27,28], so

one only needs to consider the role of strand-peeling transition in

DNA overstretching assisted RecA polymerization under our

experimental conditions. It should be noted that under our

experimental conditions in Figures 1–3, significant amount of

ssDNA was produced through the strand-peeling transition, for

both the l DNA and the 595 bp DNA (Figure S6).

An interesting alternative possibility would be that the novel

double-stranded S-DNA produced through B-to-S transition is the

actual substrate for RecA, which was proposed based on the

similarly elongated DNA backbones between the S-DNA and fully

polymerized RecA filaments [13,18,20]. To further test this

Figure 4. The S-DNA produced in the B-to-S transition does not
promote RecA nucleoprotein filament formation. (A) Time traces
of the extension of an 876 bp DNA tether with two GC-rich ends
recorded during B-to-S transition in force-increase scan and the reverse
S-to-B transition in the subsequent force-decrease scan in 50 mM KCl,
10 mM MgCl2, pH 7.4, at 24uC. The transitions are completely reversible,
indicated by the same extensions recorded at the same forces during

the force-increase and force-decrease scans. Inset on the top shows a
sketch of the 876 bp DNA; (B–C) Results identical to those in (A) were
obtained when the same experiments were repeated on the same DNA
tether in 1 mM RecA and 1 mM ATP, 1x ATP regeneration system (B) or
in 1 mM RecA and 1 mM ATPcS (C), indicating no RecA filaments formed
on the S-DNA produced by the B-to-S transition within the
experimental time scale.
doi:10.1371/journal.pone.0066712.g004
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possibility, we investigated the effect of pure B-to-S transition on

the RecA polymerization using an 876 bp DNA construct which

contained two short GC-rich handles to the two ends of DNA

(Figure 4A). These two GC-rich handles prevented strand peeling

from the two DNA ends, and the resulting DNA overstretching

transition became a pure B-to-S transition, as demonstrated in our

previous paper [18].

Figure 4A shows force-response of DNA with GC-rich handles

under the assay conditions in the absence of RecA. The transition,

indicated by increased DNA extension variance, started at , 65

pN and finished at , 75 pN. It is a pure B-to-S transition

indicated by the lack of hysteresis between the extensions recorded

in the force-increase scan and in the force-decrease scan [17–20]

(Methods S1). Figure 4B & C show the DNA extension time

courses recorded on the same DNA in the presence of 1 mM RecA

with ATP (B) or ATPcS (C) as co-factors. The results were

identical to Figure 4A, indicating the absence of RecA nucleation

and polymerization in the overstretched DNA. Figure S7A–B

show another typical independent experiment that consistently

demonstrated that the RecA is unable to nucleate and polymerize

on S-DNA.

Taken together the results in Figure 2A, Figure 3B, Figure 4B

and Figure S7, which were obtained under identical solution

conditions, we conclude that the DNA overstretching transition

assisted RecA polymerization, which always started within seconds

after DNA overstretching, occurred mainly through binding to

ssDNA produced by the strand-peeling transition. In other words,

S-DNA is not a preferable binding substrate for RecA filament

formation.

The foregoing conclusion predicts that, under solution condi-

tions that favor net RecA polymerization, a pre-existing ssDNA

overhang should also facilitate initial RecA nucleation without

DNA overstretching transition. Several lines of evidence have

established that polymerization of RecA proceeds in the 5’- 3’

direction, and requires a minimal of ssDNA of ,9 nucleotide

residues (for binding of three RecA monomers) for initial

nucleation [8]. Therefore, we tested the prediction using a 595

bp DNA construct containing a 5’ ssDNA overhang of 12-nt.

Figure 5A shows a time-course of DNA extension in solution

Figure 5. Effects of ssDNA overhangs on the formation of RecA nucleoprotein filaments. (A) Time traces of the extension of one end-
closed 595 bp DNA with a 12 nt 5’ ssDNA tail in 1 mM RecA, 1 mM ATP, 1x ATP regeneration system, 50 mM KCl, 10 mM MgCl2, pHpH 7.4, at 37uC. A
stable RecA nucleoprotein filament was formed after a spontaneous RecA polymerization at around 5 pN. (B) Time traces of a DNA with the same
structure as the DNA in (A) at 24uC (other conditions remained unchanged). A stable RecA nucleoprotein filament was also observed for over 5000
second, after a spontaneous RecA polymerization at around 3 pN. The shadowed area represents the process of solution flow with RecA.
doi:10.1371/journal.pone.0066712.g005
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containing 1 mM RecA, 1 mM ATP, 1x ATP regeneration system

in 50 mM KCl, 10 mM MgCl2, 20 mM Tris (pH 7.4) at 37uC.

We found that rapid RecA polymerization occurred spontaneously

when the RecA solution was introduced to channel at , 5.6 pN,

and reached a steady state in only , 40 seconds. The DNA

became ,120 nm longer (,50% to B-DNA) than that before the

RecA solution was introduced, indicating a fully formed RecA

filament. The DNA extension underwent quick and large dynamic

fluctuation, but the average extension remained constant over a

time period of , 600 seconds. As a control, the same experiment

was repeated with another DNA construct containing a 3’ ssDNA

overhang of 12-nt ligated to the 576 bp dsDNA (other

experimental conditions remain unchanged). Over the time period

of ,1500 seconds, spontaneous RecA polymerization did not

occur on the DNA at similar force , 6.4 pN (Figure S8A). In

addition, the extension fluctuation is much less dynamic (smoother

and smaller variance) compared to Figure 5A; the standard

variance of the extensions (orange data) in Figure 5A&B are 18 nm

and 4 nm, respectively. When the force was subsequently

increased to . 60 pN where DNA overstretching transition

began, RecA polymerization immediately started and the resulting

RecA filament was stable (Figure S8B).

Figure 5A demonstrated that DNA with pre-existing 5’

overhang at 37uC could dramatically facilitate RecA nucleation

compared to the same DNA sequence without the 5’ overhang.

This is consistent with the previous conclusion that the DNA

overstretching assisted RecA polymerization is mainly through the

ssDNA produced during the transition. The results further

establish that the RecA polymerization in a dsDNA is mainly

through polymerization on ssDNA strand in a 5’ to 3’ direction.

Interestingly, similar rapid spontaneous RecA nucleation and

polymerization on the one-end-closed 596 bp DNA with a 12 nt

5’tail overhang was also observed at 24uC in solution containing

1 mM RecA, 1 mM ATP, 1x ATP regeneration system in 50 mM

KCl, 10 mM MgCl2, 20 mM Tris (pH 7.4) (Figure 5B). The

resulting stable RecA filament was , 110 nm longer (, 50%) than

B-DNA for a force range of 2–40 pN (Figure S9). The DNA

extension also underwent a quick and large dynamic fluctuation,

but the average extension remained constant over a time period of

,5000 seconds (Figure 5B). Figure S10A–B show two other

typical independent experiments where spontaneous RecA poly-

merization and resulting stable RecA filaments over . 1000

second were observed at several pN forces at 24uC. These results

are contrast to previous results obtained on DNA with blunt ends

(Figure 1A, Figure 2A, and Figure 3B as well as Figure S4A),

where pre-formed RecA filaments in the same condition are

unstable and undergo step-wise de-polymerization. This results

highlight that the ends of DNA have a major role in regulating

both the RecA nucleation and the overall stability of a preformed

RecA filament. In the Discussion section, we propose an end-

capping mechanism to explain the stable RecA filament in 24uC
and pH 7.4 on DNA with 5’ overhang.

Discussion

In this study, we investigated the effects of multiple physiological

factors including temperature, pH, ionic strength, and tensile

force, as well as DNA ends that govern RecA polymerization on

dsDNA at single molecule level. We found that the competition

between RecA polymerization and de-polymerization is exquisite-

ly regulated by solution conditions over a wide range of

physiological changes (24 – 37uC, pH 6.2 – 7.4, 50 – 150 mM

KCl) and the ends of DNA. The effects of the three most critical

factors (temperature, pH, and the DNA ends) are summarized in

Table 1.

Here, we reconcile a large number of apparently discrepant

results. An initial study reported spontaneous RecA polymeriza-

tion on l DNA at low force (, 6 pN), high temperature (, 37uC)

and low pH (, pH 6.8) [11]. The spontaneous RecA polymer-

ization unaided by DNA overstretching can be explained by the

fortuitous presence of 5’ ssDNA overhangs. Similarly, others have

reported net RecA polymerization on dsDNA at both high (37uC)

and low temperature (22uC), at low pH (, pH 6.2) and low force

[8,29]. These findings are consistent with ours in the similar

experimental conditions. However, another study reported net

RecA polymerization on dsDNA only at large force [14]. At forces

less than 30 pN, pre-formed RecA filaments were found to be

unstable and rapidly dissociated from DNA. As their experiments

were conducted at low temperature (,25uC), high pH (, pH 7.5),

these results are consistent with our results obtained under similar

conditions.

At pH 7.4 in 24uC – 37uC, for dsDNA with blunt ends,

nucleation requires overcoming a large kinetic barrier, which can

be relieved by ssDNA produced through DNA overstretching. For

a partially formed RecA filament, its fate is determined by a

competition between progressive polymerization and abrupt de-

Table 1. Summary of main results of RecA nucleation, polymerization, and stability.

Experimental Conditions a RecA nucleation, polymerization, and stability

24uC, pH 7.4; DNA with blunt ends (48,502 bp l-DNA; 595 bp
one-end-sealed DNA)

1. Nucleation requires force-induced DNA strand-peeling transition; 2. Polymerization requires
high force (. 40 pN); 3. Pre-formed RecA filament is unstable at forces of several pN;

24uC, pH 7.4; DNA with 5’ ssDNA tail (595 bp DNA
with 12 nt 5’ ssDNA tail)

1. Spontaneous nucleation and polymerization without assistance of DNA strand-peeling; 2.
Pre-formed RecA filament is stable at forces of several pN;

24uC, pH 7.4; 876 bp DNA with two GC rich handles, 600 bp
GC rich end-closed DNA

Nucleation and polymerization do not occur during DNA B-to-S transition;

37uC, pH 7.4; DNA with blunt ends (48,502 bp l-DNA; 595 bp
one-end-sealed DNA)

1. Nucleation requires force-induced DNA strand-peeling transition; 2. Progressive
polymerization occurs at forces of several pN; 3. Pre-formed RecA filament is stable at forces of
several pN;

37uC, pH 7.4; DNA with 5’ ssDNA tail (595 bp DNA with 12 nt 5’
ssDNA tail)

1. Spontaneous nucleation and polymerization without assistance of DNA strand-peeling; 2.
Pre-formed RecA filament is stable at forces of several pN;

24uC, pH 6.2; DNA with blunt ends (48,502 bp l-DNA; 595 bp
one-end-sealed DNA)

1. Spontaneous nucleation and polymerization occur at forces of several pN; 2. Pre-formed RecA
filament is stable at forces of several pN;

aAll experiments include 1 mM RecA, 10 mM MgCl2, 50–150 mM, 1 mM ATP and 1X ATP regeneration system.
doi:10.1371/journal.pone.0066712.t001
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polymerization events. At 37uC, polymerization outcompetes de-

polymerization, resulting in a fully polymerized stable RecA

filament at forces of several pN. In contrast, at 24uC and force

below , 40 pN, de-polymerization outcompetes polymerization,

resulting in a saw-tooth dynamics in DNA extension with overall

stepwise net de-polymerization.

It has been known that RecA polymerizes from 5’ to 3’ on

ssDNA, whereas RecA de-polymerization primarily occurs from

the 5’ end during ATP-hydrolysis[1–3]. At the 5’ end of the

ssDNA strand that is polymerized with RecA, RecA dissociation

may occur during ATP-hydrolysis. Then, the vacated ssDNA

hybridizes with the complimentary strand, resulting in formation

of base paired dsDNA at the 5’ end that prevents rebinding of

RecA in this region of DNA (Figure 6A). This mechanism explains

the abrupt stepwise de-polymerization events observed in 24uC.

The slow re-polymerization process at 24uC likely indicates a

reversed RecA polymerization process from 3’ to 5’ that was

reported recently [4–7]. Higher force or higher temperature may

increase the RecA filament stability and decrease the DNA base

pair stability, which leads to net progressive polymerization and

formation of stable RecA filaments.

In contrast, in the same conditions (pH 7.4, 24uC – 37uC), for

DNA with a 12 nt 5’ ssDNA overhang, spontaneous RecA

nucleation and polymerization occur at forces of several pN,

resulting formation of a stable filament. Compared to the unstable

RecA filaments formed on DNA with blunt ends at 24uC, this

result indicates that the ssDNA tail regulates the stability of the

entire filament. We propose a 5’ end-capping mechanism to

explain the results. A 5’ ssDNA overhang provides a nucleation

site, which allow RecA polymerization invading into the dsDNA

region. On DNA polymerized with a RecA filament, RecA

dissociation still occurs at the 5’ end of the ssDNA overhang

during ATP hydrolysis. However, unlike the case of DNA with

blunt ends, there is no complementary strand to re-hybridize with

the transiently vacated ssDNA sites; hence, the vacated DNA will

be re-occupied by RecA re-polymerization resulting in stabilizing

the entire RecA filament (Figure 6B).

At pH 7.4, for dsDNA with blunt ends, overcoming a large

kinetic barrier is necessary, which can be relieved by ssDNA

produced through DNA overstretching or by adding a 5’ ssDNA

overhang to the dsDNA. In contrast, at pH , 6.2, spontaneous

RecA polymerization on DNA with blunt ends always occurred at

low force immediately after RecA solution was introduced,

suggesting that at low pH the energy barrier for initial strand

invasion is significantly reduced, either from the ends or inside the

DNA.

The complex regulation of RecA polymerization on dsDNA

may depend on many other factors and their combinations

including concentrations of nucleotides, RecA, MgCl2, the type of

nucleotide (ATP, ATPcS, and ADP, etc) [10]. In particular, it was

shown that RecA polymerization at moderate forces lead to

dsDNA unwinding [15,30]. Also, RecA from different bacterial

species may have different kinetics and stability when they form

filaments on dsDNA. These additional factors will be investigated

in our future studies.

Previous experiments employed DNA overstretching to pro-

mote RecA nucleation and for subsequent RecA polymerization

on dsDNA. Our results show that ssDNA produced through

strand-separation transition during DNA overstretching is the

main factor that alleviates the nucleation barrier. Consistently, we

found that the elongated base paired S-DNA through the B-to-S

transition during DNA overstretching did not promote initiation of

RecA polymerization, contrary to previously proposed possibility

that the S-DNA might be a binding substrate of RecA

[13,17,18,26].

During RecA-catalyzed DNA strand exchange, RecA binds to

ssDNA through its primary DNA binding site and forms a

nucleoprotein filament [1]. Interestingly, the secondary DNA

Figure 6. Mechanistic models of the stability of RecA filaments formed on dsDNA. (A) On dsDNA with blunt ends, at 37uC and pH 7.4 or
24uC and pH 6.2, polymerization of a partially formed RecA filament outcompetes DNA re-hybridization, leading to a net extension of the RecA
filament into a stable fully coated RecA filament. In contrast, at 24uC and pH 7.4, DNA re-hybridization outcompetes RecA polymerization, leading to
a net de-polymerization of the RecA filament into a stable B-form DNA. (A) On dsDNA with a 5’ ssDNA overhang that provides sites to initial RecA
nucleation and polymerization, invasion of the RecA filament formed on the ssDNA overhang into the dsDNA region occurred in 24–37uC and pH 7.4,
leading to stable fully coated RecA filament explained by the end-capping mechanism discussed in the text.
doi:10.1371/journal.pone.0066712.g006
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binding site can also bind ssDNA with a much higher affinity than

to dsDNA [31]. Our results suggest that RecA polymerization on

dsDNA occurs likely via ssDNA in a 5’-3’ direction and the

displaced strand from dsDNA is held by the secondary DNA

binding site. This culminates in the formation ssDNA-RecA-

ssDNA co-filament, consistent with the model proposed by Pugh

and Cox [10].

In summary, our findings provide a greater understanding of

how temperature, pH, DNA overstretching, and ssDNA over-

hangs affect RecA function and dynamics. Additionally, we believe

that the data presented here help reconcile conflicting results of

single-molecule studies in regard to RecA polymerization and

RecA filament stability on dsDNA. Finally, as RecA filament

formed on dsDNA is believed to represent a functional state

during DNA strand exchange, these results may also provide

insights to the RecA activities in vivo.

Supporting Information

Figure S1 Time trace of RecA polymerization and de-
polymerization on a l-DNA in 1 mM RecA, 50 mM KCl,
10 mM MgCl2, 1 mM ATP, 1X ATP regeneration system,

pH 7.4, and 24 6C at different forces indicated by
different colors. Progressive polymerization was observed at

,73 pN after DNA overstretching indicated by shortening in

DNA extension (Red), while de-polymerization was observed

when force was decreased to ,5.6 pN (black).

(PNG)

Figure S2 Time trace of spontaneous RecA polymeriz-
ing on a l-DNA in 1 mM RecA, 50 mM KCl, 10 mM
MgCl2, 1 mM ATP, 1X ATP regeneration system,

pH 7.4, and 376C, at a force of , 7 pN. Progressive

polymerization was observed (blue arrow) before the DNA was

broken after 800 second (orange arrow). The noisy data in the

shadowed areas were recorded during buffer exchanging.

(PNG)

Figure S3 Time trace of spontaneous RecA polymeriz-
ing on a l-DNA in 1 mM RecA, 50 mM KCl, 10 mM
MgCl2, 1 mM ATP, 1X ATP regeneration system,

pH 6.2, and 246C, at a force of , 3.1 pN. The noisy data

in the shadowed areas were recorded during buffer exchanging.

(PNG)

Figure S4 Effects of KCl concentration on the dynamics
of RecA filaments. (A–B) Time traces of polymerization and de-

polymerization of RecA filament on a 595 bp dsDNA in 1 mM

RecA, 10 mM MgCl2, 1 mM ATP, 1X ATP regeneration system,

pH 7.4, and 24uC, with 50 mM KCl (A) first then 150 mM KCl

(B). In both A and B, progressive RecA polymerization was

observed after the force was jumped from 44.1 pN to 67.1 pN

(red). Different dynamics of de-polymerization and polymerization

of 50 mM KCl and 150 mM KCl were observed when force was

jumped back to 44.1 pN (blue).

(PNG)

Figure S5 Time trace of spontaneous RecA polymeriz-
ing on a 595 bp DNA in 1 mM RecA, 50 mM KCl, 10 mM
MgCl2, 1 mM ATP, 1X ATP regeneration system, pH 6.1,

and 246C, at a force of ,10 pN and stable RecA filament
at , 3 pN. The noisy data in the shadowed areas were recorded

during buffer exchanging.

(PNG)

Figure S6 Extension hysteresis between force-decrease
scan and force increase scan during the strand peeling

transition. Time trace of force-increase scan and force-decrease

scan of a 595 bp DNA in 50 mM KCl, 10 mM MgCl2, 1 mM

ATP, 1X ATP regeneration system, pH 7.4, and 24uC, at different

forces indicated by different colors. The hysteresis indicated by

different extensions at 53.9 pN (orange) between the two force-

scans suggests that the DNA went through a strand peeling

transition during the force-increase scan.

(PNG)

Figure S7 Time traces of an ,600 bp two-ends-closed

DNA in 50 mM KCl, 10 mM MgCl2, pH 7.4, and 246C,

without RecA (A) or with 1 mM RecA,1 mM ATP, 1x ATP
regeneration system (B). The DNA overstretching transitions

in both A and B are completely reversible and without hysteresis,

indicated by the same extensions recorded at the same forces

during the force-increase and force-decrease scans. These results

indicate that no RecA filaments formed on the S-DNA produced

during B-to-S transition within the experimental time scale. Inset

shows a sketch of the end-closed DNA.

(PNG)

Figure S8 Time traces of the extension of a 595 bp DNA
with a 12 nt 3’ ssDNA tail and another end sealed. (A)

Time traces of the extension of the DNA in 1 mM RecA, 50 mM

KCl, 10 mM MgCl2, 1 mM ATP, 1x ATP regeneration system,

pH 7.4, and 37uC. Within the experimental time scale of 1600

seconds, the DNA extension remained at the B-DNA extension,

indicating that 3’ ssDNA overhang did not promote RecA filament

formation at low force. (B) Time trace of the same DNA in the

same solution and temperature condition, when the force was

subsequently increased to . 60 pN where DNA overstretching

transition occurred, the RecA polymerization immediately started

and the resulting RecA filament was stable. When the force was

reduced to 6.4 pN, the DNA extension was still ,120 nm longer

than the B-DNA before RecA polymerization, indicating a stable

RecA filament at low force.

(PNG)

Figure S9 Force responses of a 595 bp one-end closed
DNA with a 12 nt 5’ ssDNA (Black), and the same DNA
with RecA filament formed (Red). The extension of the DNA

formed with RecA filament is about 50% longer than that of naked

DNA before RecA was introduced. After remove the RecA by

exchanging to pure buffered solution, the RecA filament de-

polymerized and resulting DNA extension (blue) overlaps with

naked DNA extension. The DNA used in this experiment is the

same as that used in Figure 5B in the main text.

(PNG)

Figure S10 Spontaneous RecA polymerization on two
independent 595 bp one-end closed DNA with a 12 nt 5’
ssDNA tail at low force in 1 mM RecA, 50 mM KCl,
10 mM MgCl2, 1 mM ATP, 1x ATP regeneration system,

pH 7.4, and 246C. RecA polymerization started during

introduction of RecA solution, and it fully polymerized after

solution exchange finished. The solution exchange was slow to

maintain , 10 pN in the whole process.

(PNG)

Methods S1

(PDF)
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