61 research outputs found

    Abnormal regulation of soluble and anchored IL-6 receptor in monocytes from patients with essential thrombocythemia

    Get PDF
    Objective: In a previous study, we found increased plasma soluble receptor for interleukin-6 (sIL-6R) levels in patients with essential thrombocythemia (ET) that could promote megakaryopoiesis through IL-6 binding and further interaction with the signal transducer gp130. Here we have searched for the cell source of sIL-6R within mononuclear cells in these patients and the underlying abnormalities involved in its overproduction. Materials and Methods: Thirty patients with the diagnosis of ET were studied. sIL-6R levels were measured by enzyme-linked immunosorbent assay technique in the supernatants of peripheral monocyte and lymphocyte cultures. Expression of membrane-anchored IL-6R was determined by flow cytometry. In order to study the mechanism of sIL-6R production, tumor necrosis factor−α protease inhibitor was added to specifically block IL-6R shedding. Gene expression of sIL-6R levels were evaluated by reverse transcription polymerase chain reaction. Results: Monocytes were the main source of sIL-6R. Besides, in ET patients, monocyte sIL-6R release was higher than that of controls (p = 0.0014). Lymphocytes enhanced monocyte sIL-6R production by cell-mediated contact in normal controls, but this cooperation could not be seen in patients. Membrane expression of IL-6R was increased after monocyte adhesion in ET. sIL-6R synthesis was upregulated in most patients, while messenger RNA was normal. Conclusions: Our results indicate that ET monocytes are responsible for sIL-6R overproduction within mononuclear cells through synthesis upregulation. In addition, the lack of cooperation of lymphocytes in monocyte sIL-6R production in ET could be due to a monocyte abnormality. The agonistic effect of sIL-6R on IL-6 action could contribute to the exacerbated megakaryocytic growth in ET.Fil: Goette, Nora Paula. Universidad de Buenos Aires. Facultad de Medicina. Instituto de Investigaciones Médicas; Argentina. Consejo Nacional de Investigaciones Cientificas y Tecnicas. Oficina de Coordinacion Administrativa Houssay. Instituto de Investigaciones Medicas; ArgentinaFil: Lev, Paola Roxana. Universidad de Buenos Aires. Facultad de Medicina. Instituto de Investigaciones Médicas; Argentina. Consejo Nacional de Investigaciones Cientificas y Tecnicas. Oficina de Coordinacion Administrativa Houssay. Instituto de Investigaciones Medicas; ArgentinaFil: Heller, Paula Graciela. Universidad de Buenos Aires. Facultad de Medicina. Instituto de Investigaciones Médicas; Argentina. Consejo Nacional de Investigaciones Cientificas y Tecnicas. Oficina de Coordinacion Administrativa Houssay. Instituto de Investigaciones Medicas; ArgentinaFil: Glembotsky, Ana Claudia. Universidad de Buenos Aires. Facultad de Medicina. Instituto de Investigaciones Médicas; Argentina. Consejo Nacional de Investigaciones Cientificas y Tecnicas. Oficina de Coordinacion Administrativa Houssay. Instituto de Investigaciones Medicas; ArgentinaFil: Chazarreta, Carlos Daniel. Universidad de Buenos Aires. Facultad de Medicina. Instituto de Investigaciones Médicas; Argentina. Consejo Nacional de Investigaciones Cientificas y Tecnicas. Oficina de Coordinacion Administrativa Houssay. Instituto de Investigaciones Medicas; ArgentinaFil: Salim, Juan Pablo. Universidad de Buenos Aires. Facultad de Medicina. Instituto de Investigaciones Médicas; Argentina. Consejo Nacional de Investigaciones Cientificas y Tecnicas. Oficina de Coordinacion Administrativa Houssay. Instituto de Investigaciones Medicas; ArgentinaFil: Molinas, Felisa Concepcion. Universidad de Buenos Aires. Facultad de Medicina. Instituto de Investigaciones Médicas; Argentina. Consejo Nacional de Investigaciones Cientificas y Tecnicas. Oficina de Coordinacion Administrativa Houssay. Instituto de Investigaciones Medicas; ArgentinaFil: Marta, Rosana Fernanda. Universidad de Buenos Aires. Facultad de Medicina. Instituto de Investigaciones Médicas; Argentina. Consejo Nacional de Investigaciones Cientificas y Tecnicas. Oficina de Coordinacion Administrativa Houssay. Instituto de Investigaciones Medicas; Argentin

    Unlike for Human Monocytes after LPS Activation, Release of TNF-α by THP-1 Cells Is Produced by a TACE Catalytically Different from Constitutive TACE

    Get PDF
    Tumor necrosis factor-alpha (TNF-α) is a pro-inflammatory cytokine today identified as a key mediator of several chronic inflammatory diseases. TNF-α, initially synthesized as a membrane-anchored precursor (pro-TNF-α), is processed by proteolytic cleavage to generate the secreted mature form. TNF-α converting enzyme (TACE) is currently the first and single protease described as responsible for the inducible release of soluble TNF-α.Here, we demonstrated the presence on THP-1 cells as on human monocytes of a constitutive proteolytical activity able to cleave pro-TNF-α. Revelation of the cell surface TACE protein expression confirmed that the observed catalytic activity is due to TACE. However, further studies using effective and innovative TNF-α inhibitors, as well as a highly selective TACE inhibitor, support the presence of a catalytically different sheddase activity on LPS activated THP-1 cells. It appears that this catalytically different TACE protease activity might have a significant contribution to TNF-α release in LPS activated THP-1 cells, by contrast to human monocytes where the TACE activity remains catalytically unchanged even after LPS activation.On the surface of LPS activated THP-1 cells we identified a releasing TNF-α activity, catalytically different from the sheddase activity observed on human monocytes from healthy donors. This catalytically-modified TACE activity is different from the constitutive shedding activity and appears only upon stimulation by LPS

    TNF-α converting enzyme (TACE) is inhibited by TIMP-3

    Get PDF
    TNF-α converting enzyme (TACE; ADAM-17) is a membrane-bound disintegrin metalloproteinase that processes the membrane-associated cytokine proTNF-α to a soluble form. Because of its putative involvement in inflammatory diseases, TACE represents a significant target for the design of specific synthetic inhibitors as therapeutic agents. In order to study its inhibition by tissue inhibitors of metalloproteinases (TIMPs) and synthetic inhibitors of metalloproteinases, the catalytic domain of mouse TACE (rTACE) was overexpressed as a soluble Ig fusion protein from NS0 cells. rTACE was found to be well inhibited by peptide hydroxamate inhibitors as well as by TIMP-3 but not by TIMP-1, -2 and -4. These results suggest that TIMP-3, unlike the other TIMPs, may be important in the modulation of pathological events in which TNF-α secretion is involved
    • …
    corecore