26 research outputs found

    Experimental study of internal wave generation by convection in water

    Full text link
    We experimentally investigate the dynamics of water cooled from below at 0^oC and heated from above. Taking advantage of the unusual property that water's density maximum is at about 4^oC, this set-up allows us to simulate in the laboratory a turbulent convective layer adjacent to a stably stratified layer, which is representative of atmospheric and stellar conditions. High precision temperature and velocity measurements are described, with a special focus on the convectively excited internal waves propagating in the stratified zone. Most of the convective energy is at low frequency, and corresponding waves are localized to the vicinity of the interface. However, we show that some energy radiates far from the interface, carried by shorter horizontal wavelength, higher frequency waves. Our data suggest that the internal wave field is passively excited by the convective fluctuations, and the wave propagation is correctly described by the dissipative linear wave theory

    Evolution of Surface Hydrology in the Sahelo-Sudanian Strip: An Updated Review

    Get PDF
    In the West African Sahel, two paradoxical hydrological behaviors have occurred during the last five decades. The first paradox was observed during the 1968–1990s ‘Great Drought’ period, during which runoff significantly increased. The second paradox appeared during the subsequent period of rainfall recovery (i.e., since the 1990s), during which the runoff coefficient continued to increase despite the general re-greening of the Sahel. This paper reviews and synthesizes the literature on the drivers of these paradoxical behaviors, focusing on recent works in the West African Sahelo/Sudanian strip, and upscaling the hydrological processes through an analysis of recent data from two representative areas of this region. This paper helps better determine the respective roles played by Land Use/Land Cover Changes (LULCC), the evolution of rainfall intensity and the occurrence of extreme rainfall events in these hydrological paradoxes. Both the literature review and recent data converge in indicating that the first Sahelian hydrological paradox was mostly driven by LULCC, while the second paradox has been caused by both LULCC and climate evolution, mainly the recent increase in rainfall intensity

    Modeling the Sahelian hydrological paradox : the case of the Agoufou (Mali)

    No full text
    La région sahélienne est caractérisée, depuis la moitié du XXème siècle, par un déficit pluviométrique important marqué par de fortes sécheresses en 1972-73 et en 1983-84 qui ont eu des effets considérables sur l'écosystème, les ressources et la population locale. Les réponses hydrologiques induites par ce déficit se traduisent par des effets contrastés suivant la zone géographique considérée. Si dans la zone soudano-guinéenne, une baisse des écoulements de surface a été observée, la zone sahélienne, paradoxalement, a connu une augmentation de ces écoulements durant la même période. La plupart des études visant à mieux comprendre cette évolution paradoxale ont été effectuées en milieu sahélien cultivé, où l'augmentation du ruissellement a souvent été attribuée au changement d'usage des sols suite aux besoins de la population croissante. Toutefois, ce même phénomène est aussi observable dans les zones majoritairement pastorales où les modifications d'usage des sols ne suffisent pas à expliquer les modifications hydrologiques observées. Les objectifs de cette thèse consistent à étudier, au travers de la modélisation hydrologique, l'évolution conjointe des différents processus régissant l'hydrologie sahélienne et de hiérarchiser leurs impacts sur l'évolution du ruissellement de surface sur les 50 dernières années en milieu pastoral. Pour ce faire, le modèle de ruissellement KINEROS2, a été appliqué au bassin versant d'Agoufou. Ce bassin de type endoréique est situé dans la région du Gourma, au Mali et est instrumenté par le service d'observation AMMA-CATCH qui fournit une partie des données nécessaires au forçage et à l'évaluation du modèle. La première partie de ces travaux a été dédiée à la quantification des changements survenus au cours des 50 dernières années sur ce bassin ainsi qu'au niveau de son exutoire, le lac d'Agoufou. Une cartographie des unités paysagères identifiées à partir d'images satellite et de photographies aérienne, a été réalisée pour les années 1956 et 2011. Cette cartographie a mis en évidence l'évolution des états de surface, marquée par l'érosion des sols peu profonds et la dégradation de la végétation de type brousse tigrée en faveur de l'extension des surfaces de sols nus (+35 km² entre 1956 et 2011) ainsi que par l'augmentation de la densité du réseau de drainage (×1.5) et par celle de la superficie du lac (534 m² en 1956 pour 2×106 m² en 2011). L'évolution du débit au cours du temps a été quantifiée à partir des variations de volume du lac établies via une relation entre les surfaces estimées par télédétection et les hauteurs d'eau mesurées in-situ. Cette relation a été couplée à une équation de bilan d'eau, prenant en compte les précipitations, l'évaporation et l'infiltration sur le lac pour quantifier les apports d'eau à l'exutoire. Nous avons ainsi mis en évidence l'évolution nette du coefficient de ruissellement du bassin qui est passé de 0% dans les années 1970 à 5.5 % dans les années 2000. La deuxième partie de cette thèse a été consacrée à la modélisation hydrologique et à la réalisation de simulations de références et d'attribution des changements observés à différents facteurs. L'augmentation des surfaces de sols nus associée à une diminution de la végétation explique largement l'évolution de l'hydrologie de surface du bassin depuis les années 1960. Le développement du réseau de drainage et l'encroûtement des dunes jouent des rôles secondaires dans cette évolution. En revanche, la variation du régime des pluies, tend à diminuer le ruissellement au cours du temps de plus de 34%. Les mécanismes identifiés sur le bassin d'Agoufou montrent l'importance de la dynamique du système couplé végétation/érosion/réseau hydrique et de leurs rôles sur d'autres bassins Sahéliens où l'augmentation du ruissellement a été également mise en évidence.Since the mid-twentieth century, the Sahel is characterized by a significant rainfall deficit marked by severe droughts in 1972-73 and 1983-84 that have significantly impacted ecosystems, resources and local population. The responses induced by this deficit result in opposite effects according to geographical area. If, in the Sudano-Guinean zone, a reduced surface runoff was observed, the Sahel experienced a paradoxical increase of surface runoff during the same period. Most of the studies aiming at understanding this paradoxical situation have been performed in crop-dominated areas, where the runoff increase has been attributed to land use change following population growth. However, the same phenomenon is also observed in pastoral areas where land use change cannot explain the observed hydrological changes. The objective of this thesis is to study the different processes governing Sahelian hydrology and prioritize their impact on the surface runoff evolution in pastoral areas by means of hydrological modeling. To do this, the KINEROS2 runoff model was applied to the Agoufou watershed. This endorheic watershed is located in the Gourma region, in Mali. It is instrumented by the AMMA-CATCH observatory, which provides most of the necessary data for forcing and evaluating the model. The first part of this work was dedicated to the quantification of the changes occurred over the last 50 years on the Agoufou watershed and its outlet, the Agoufou lake. Land cover maps derived from satellite images and aerial photographs for 1956 and 2011 allowed estimating the changes in surface characteristics. Erosion of shallow soil and degradation of the tiger bush vegetation in favor of the bare soil extension (35 km² between 1956 and 2011) as well as increases in drainage density (× 1.5) and in lake area (534 m² in 1956 to 2 x 106 m² in 2011) were the main changes observed. The discharge evolution over time was quantified from changes in lake's volume, computed via a relationship between the lake's surface estimated by remote sensing and in-situ water height data. This relationship was coupled to a water balance equation, taking into account precipitation, water evaporation and lake's bottom infiltration to quantify the water inflow to the lake. The runoff coefficient of the watershed was shown to increase from 0 % in the 1970s to 5.5% in the 2000s. The second part of this thesis was dedicated to hydrological modeling in order to rank the impact of the surface changes highlighted above on runoff. Series of reference and attribution simulations were performed. The increase in bare soil surfaces associated with a decrease in vegetation largely explains the hydrological changes of the watershed since the 1960s. The development of the drainage network and the crusting of sandy dunes play a less important role on this evolution, while the evolution of daily precipitation reduces runoff over time by more than 34%, which contradicts the observed trend. The mechanisms identified in the Agoufou watershed highlight the pivotal role of the dynamics of the coupled vegetation/erosion/drainage network system and their role in other Sahelian regions, where increased runoff was also observed

    Modélisation de l'évolution paradoxale de l'hydrologie sahélienne.: Application au bassin d'Agoufou (Mali)

    Get PDF
    Since the mid-twentieth century, the Sahel is characterized by a significant rainfall deficit marked by severe droughts in 1972-73 and 1983-84 that have significantly impacted ecosystems, resources and local population. The responses induced by this deficit result in opposite effects according to geographical area. If, in the Sudano-Guinean zone, a reduced surface runoff was observed, the Sahel experienced a paradoxical increase of surface runoff during the same period.Most of the studies aiming at understanding this paradoxical situation have been performed in crop-dominated areas, where the runoff increase has been attributed to land use change following population growth. However, the same phenomenon is also observed in pastoral areas where land use change cannot explain the observed hydrological changes.The objective of this thesis is to study the different processes governing Sahelian hydrology and prioritize their impact on the surface runoff evolution in pastoral areas by means of hydrological modeling. To do this, the KINEROS2 runoff model was applied to the Agoufou watershed. This endorheic watershed is located in the Gourma region, in Mali. It is instrumented by the AMMA-CATCH observatory, which provides most of the necessary data for forcing and evaluating the model.The first part of this work was dedicated to the quantification of the changes occurred over the last 50 years on the Agoufou watershed and its outlet, the Agoufou lake. Land cover maps derived from satellite images and aerial photographs for 1956 and 2011 allowed estimating the changes in surface characteristics. Erosion of shallow soil and degradation of the tiger bush vegetation in favor of the bare soil extension (35 km² between 1956 and 2011) as well as increases in drainage density (× 1.5) and in lake area (534 m² in 1956 to 2 x 106 m² in 2011) were the main changes observed. The discharge evolution over time was quantified from changes in lake's volume, computed via a relationship between the lake’s surface estimated by remote sensing and in-situ water height data. This relationship was coupled to a water balance equation, taking into account precipitation, water evaporation and lake’s bottom infiltration to quantify the water inflow to the lake. The runoff coefficient of the watershed was shown to increase from 0 % in the 1970s to 5.5% in the 2000s.The second part of this thesis was dedicated to hydrological modeling in order to rank the impact of the surface changes highlighted above on runoff. Series of reference and attribution simulations were performed. The increase in bare soil surfaces associated with a decrease in vegetation largely explains the hydrological changes of the watershed since the 1960s. The development of the drainage network and the crusting of sandy dunes play a less important role on this evolution, while the evolution of daily precipitation reduces runoff over time by more than 34%, which contradicts the observed trend.The mechanisms identified in the Agoufou watershed highlight the pivotal role of the dynamics of the coupled vegetation/erosion/drainage network system and their role in other Sahelian regions, where increased runoff was also observed.La région sahélienne est caractérisée, depuis la moitié du XXème siècle, par un déficit pluviométrique important marqué par de fortes sécheresses en 1972-73 et en 1983-84 qui ont eu des effets considérables sur l’écosystème, les ressources et la population locale. Les réponses hydrologiques induites par ce déficit se traduisent par des effets contrastés suivant la zone géographique considérée. Si dans la zone soudano-guinéenne, une baisse des écoulements de surface a été observée, la zone sahélienne, paradoxalement, a connu une augmentation de ces écoulements durant la même période.La plupart des études visant à mieux comprendre cette évolution paradoxale ont été effectuées en milieu sahélien cultivé, où l’augmentation du ruissellement a souvent été attribuée au changement d’usage des sols suite aux besoins de la population croissante. Toutefois, ce même phénomène est aussi observable dans les zones majoritairement pastorales où les modifications d’usage des sols ne suffisent pas à expliquer les modifications hydrologiques observées.Les objectifs de cette thèse consistent à étudier, au travers de la modélisation hydrologique, l’évolution conjointe des différents processus régissant l’hydrologie sahélienne et de hiérarchiser leurs impacts sur l’évolution du ruissellement de surface sur les 50 dernières années en milieu pastoral. Pour ce faire, le modèle de ruissellement KINEROS2, a été appliqué au bassin versant d’Agoufou. Ce bassin de type endoréique est situé dans la région du Gourma, au Mali et est instrumenté par le service d’observation AMMA-CATCH qui fournit une partie des données nécessaires au forçage et à l’évaluation du modèle.La première partie de ces travaux a été dédiée à la quantification des changements survenus au cours des 50 dernières années sur ce bassin ainsi qu’au niveau de son exutoire, le lac d’Agoufou. Une cartographie des unités paysagères identifiées à partir d’images satellite et de photographies aérienne, a été réalisée pour les années 1956 et 2011. Cette cartographie a mis en évidence l’évolution des états de surface, marquée par l’érosion des sols peu profonds et la dégradation de la végétation de type brousse tigrée en faveur de l’extension des surfaces de sols nus (+35 km² entre 1956 et 2011) ainsi que par l'augmentation de la densité du réseau de drainage (×1.5) et par celle de la superficie du lac (534 m² en 1956 pour 2×106 m² en 2011). L’évolution du débit au cours du temps a été quantifiée à partir des variations de volume du lac établies via une relation entre les surfaces estimées par télédétection et les hauteurs d’eau mesurées in-situ. Cette relation a été couplée à une équation de bilan d’eau, prenant en compte les précipitations, l’évaporation et l’infiltration sur le lac pour quantifier les apports d’eau à l’exutoire. Nous avons ainsi mis en évidence l’évolution nette du coefficient de ruissellement du bassin qui est passé de 0% dans les années 1970 à 5.5 % dans les années 2000.La deuxième partie de cette thèse a été consacrée à la modélisation hydrologique et à la réalisation de simulations de références et d’attribution des changements observés à différents facteurs. L’augmentation des surfaces de sols nus associée à une diminution de la végétation explique largement l’évolution de l’hydrologie de surface du bassin depuis les années 1960. Le développement du réseau de drainage et l’encroûtement des dunes jouent des rôles secondaires dans cette évolution. En revanche, la variation du régime des pluies, tend à diminuer le ruissellement au cours du temps de plus de 34%. Les mécanismes identifiés sur le bassin d’Agoufou montrent l'importance de la dynamique du système couplé végétation/érosion/réseau hydrique et de leurs rôles sur d’autres bassins Sahéliens où l’augmentation du ruissellement a été également mise en évidence

    The paradoxical evolution of runoff in the pastoral Sahel: analysis of the hydrological changes over the Agoufou watershed (Mali) using the KINEROS-2 model

    No full text
    International audienceIn recent decades, the Sahel has witnessed a paradoxical increase in surface water despite a general precipitation decline. This phenomenon, commonly referred to as the Sahelian paradox, is not completely understood yet. The role of cropland expansion due to the increasing food demand by a growing population has been often put forward to explain this situation for the cultivated Sahel. However, this hypothesis does not hold in pastoral areas where the same phenomenon is observed. Several other processes, such as the degradation of natural vegetation following the major droughts of the 1970s and the 1980s, the development of crusted topsoils, the intensification of the rainfall regime and the development of the drainage network, have been suggested to account for this situation. In this paper, a modeling approach is proposed to explore, quantify and rank different processes that could be at play in pastoral Sahel. The kinematic runoff and erosion model (KINEROS-2) is applied to the Agoufou watershed (245 km2), in the Gourma region in Mali, which underwent a significant increase of surface runoff during the last 60 years. Two periods are simulated, the past case (1960-1975) preceding the Sahelian drought and the present case (2000-2015). Surface hydrology and land cover characteristics for these two periods are derived by the analysis of aerial photographs, available in 1956, and high-resolution remote sensing images in 2011. The major changes identified are (1) a partial crusting of isolated dunes, (2) an increase of drainage network density, (3) a marked decrease in vegetation with the nonrecovery of tiger bush and vegetation growing on shallow sandy soils, and (4) important changes in soil properties with the apparition of impervious soils instead of shallow sandy soil. The KINEROS-2 model was parameterized to simulate these changes in combination or independently. The results obtained by this model display a significant increase in annual discharge between the past and the present case (p value 6 m3 (2.1 mm yr-1) and 3.29 × 106 m3 (13.4 mm yr-1) for past and present, respectively. Changes in soil properties and vegetation cover (tiger bush thickets and grassland on shallow sandy soil) are found to be the main factors causing this increase of simulated runoff, with the drainage network development contributing to a lesser extent but with a positive feedback. These results shed a new light on the Sahelian paradox phenomenon in the absence of land use change and call for further tests in other areas and/or with other models. The synergetic processes highlighted here could play a role in other Sahelian watersheds where runoff increase has been also observed

    Ponds water balance and runoff of endorheic watersheds in the Sahel.

    No full text
    International audienceThe Sahel has been characterized by a severe rainfall deficit since the mid-twentieth century, with extreme droughts in the early seventies and again in the early eighties. These droughts have strongly impacted ecosystems, water availability, fodder resources, and populations living in these areas. However, an increase of surface runoff has been observed during the same period, such as higher "summer discharge" of Sahelian's rivers generating local floods, and a general increase in pond's surface in pastoral areas of central and northern Sahel. This behavior, less rain but more surface runoff is generally referred to as the "Sahelian paradox". Various hypotheses have been put forward to explain this paradoxical situation. The leading role of increase in cropped areas, often cited for cultivated Sahel, does not hold for pastoral areas in central and northern Sahel. Processes such as degradation of vegetation subsequent to the most severe drought events, soils erosion and runoff concentration on shallow soils, which generate most of the water ending up in ponds, seem to play an important role. This still needs to be fully understood and quantified. Our study focuses on a model-based approach to better understand the hydrological changes that affected the Agoufou watershed (Gourma, Mali), typical of the central, non-cultivated Sahel. Like most of the Sahelian basins, the Agoufou watershed is ungauged. Therefore we used indirect data to provide the information required to validate a rainfall-runoff model approach. The pond volume was calculated by combining in-situ water level measurements with pond's surface estimations derived by remote sensing. Using the pond's water balance equation, the variations of pond volume combined to estimates of open water bodies' evaporation and infiltration determined an estimation for the runoff supplying the pond. This estimation highlights a spectacular runoff increase over the last sixty years on the Agoufou watershed. The runoff proxy derived for the Agoufou pond is used to evaluate results from the KINEROS2 model (KINematic runoff and EROSion). This model is specifically designed to simulate surface runoff in semi-arid watersheds. It describes the processes of runoff, infiltration and erosion by taking into account land cover and soil characteristics. We show that rain intensity, soil hydrological properties (hydraulic conductivity and Manning's roughness coefficient), contributing source area areas and land use-land cover were the major factors to take into account to correctly simulate runoff over the present period (2006-2010). This will help to simulate the past evolution of the Agoufou watershed and better understand the key mechanisms of the Sahelian paradox in non-cultivated Sahel. Finally, we will discuss the application of the SWOT and Sentinel-2 future satellites, which will provide water level and pond's surface, to obtain large-scale estimates of water balance in ungauged Sahelian basins

    Understanding exchanges across stratified/convective zones interfaces

    No full text
    International audienceIn many geophysical and astrophysical situations, a turbulent fluid layer is separated from a stably stratified one by a relatively sharp but deformable interface. Examples include the convective and radiative zones in stars, the atmospheric convective layer and overlying stratosphere, the Earth’s outer core, ... While motions in the stratified layer are often neglected, it actually supports oscillatory motions called gravito-internal waves excited by the turbulence. Besides their direct observation as for instance in asteroseismology, GIW transport energy, carry momentum, break, mix… and are thus essential for accurate models of global climate and solar or core dynamics. Global integrated models including length scales and time scales spanning many orders of magnitude are required to fully address motions in turbulent and stratified zones and to understand the details of the highly non-linear couplings between meridional circulation, turbulence and waves: this is clearly very challenging from both analytical and numerical points of view.I will present results from a laboratory experiment, where we take benefit from the unusual property of water that its density has a maximum value near 4oC to study its convective and oscillatory motions in a tank with a bottom boundary at about 0oC and a hotter upper surface. High precision local measurements of temperature fluctuations as well as global velocity measurements are performed simultaneously in the convective and stratified zones. Numerical simulations and analytical approaches complement those experiments. Our combined results allow to fully describe the main characteristics of the excited wave field and to test the two heuristic mechanisms of wave generation previously proposed, namely the mechanical oscillator effect and the deep excitation mechanism. Our main conclusions are that the main mechanism for wave excitation is the deep excitation mechanism, that it mostly excites low frequency waves that remain localized around the interface, and that the larger frequency waves propagate deeper into the stratified zone because of selective damping. Future work about non-linear effects of excited waves will also be discussed
    corecore