24 research outputs found

    Structural analysis of the digressions in the Iliad and the Odyssey

    Get PDF

    Constraints on diffuse neutrino background from primordial black holes

    Get PDF
    We calculated the energy spectra and the fluxes of electron neutrino emitted in the process of evaporation of primordial black holes (PBHs) in the early universe. It was assumed that PBHs are formed by a blue power-law spectrum of primordial density fluctuations. We obtained the bounds on the spectral index of density fluctuations assuming validity of the standard picture of gravitational collapse and using the available data of several experiments with atmospheric and solar neutrinos. The comparison of our results with the previous constraints (which had been obtained using diffuse photon background data) shows that such bounds are quite sensitive to an assumed form of the initial PBH mass function.Comment: 18 pages,(with 7 figures

    Gamma-Ray Bursts: The Underlying Model

    Full text link
    A pedagogical derivation is presented of the ``fireball'' model of gamma-ray bursts, according to which the observable effects are due to the dissipation of the kinetic energy of a relativistically expanding wind, a ``fireball.'' The main open questions are emphasized, and key afterglow observations, that provide support for this model, are briefly discussed. The relativistic outflow is, most likely, driven by the accretion of a fraction of a solar mass onto a newly born (few) solar mass black hole. The observed radiation is produced once the plasma has expanded to a scale much larger than that of the underlying ``engine,'' and is therefore largely independent of the details of the progenitor, whose gravitational collapse leads to fireball formation. Several progenitor scenarios, and the prospects for discrimination among them using future observations, are discussed. The production in gamma- ray burst fireballs of high energy protons and neutrinos, and the implications of burst neutrino detection by kilometer-scale telescopes under construction, are briefly discussed.Comment: In "Supernovae and Gamma Ray Bursters", ed. K. W. Weiler, Lecture Notes in Physics, Springer-Verlag (in press); 26 pages, 2 figure

    Measurement of the Atmospheric Muon Spectrum from 20 to 3000 GeV

    Get PDF
    The absolute muon flux between 20 GeV and 3000 GeV is measured with the L3 magnetic muon spectrometer for zenith angles ranging from 0 degree to 58 degree. Due to the large exposure of about 150 m2 sr d, and the excellent momentum resolution of the L3 muon chambers, a precision of 2.3 % at 150 GeV in the vertical direction is achieved. The ratio of positive to negative muons is studied between 20 GeV and 500 GeV, and the average vertical muon charge ratio is found to be 1.285 +- 0.003 (stat.) +- 0.019 (syst.).Comment: Total 32 pages, 9Figure

    Space as a Tool for Astrobiology: Review and Recommendations for Experimentations in Earth Orbit and Beyond

    Get PDF

    Umanesimo e rinascimento tra feltre e belluno: filologia, erudizione e biblioteche: atti del convegno di Belluno, 4 aprile 2003

    No full text
    Umanesimo tra Belluno e Feltre. Saggi su Pierio Valeriano, Pontico Virunio, Tommaso Didimo Zanetelli, Giambattista Scita, Giovanni Persicini, Andrea Alpago, Zaniacopo Sammartini, biblioteca Pilon

    High Energy Photon-Nucleon and Photon-Nucleus Cross Sections

    Full text link
    We re\,examine the theory of hadronic photon-nucleon interactions at the quark-gluon level. The possibility of multiple parton collisions in a single photon-nucleon collision requires an eikonal treatment of the high-energy scattering process. We give a general formulation of the theory in which the γp\gamma p cross section is expressed as a sum over properly eikonalized cross sections for the interaction of the virtual hadronic components of the photon with the proton, with each cross section weighted by the probability with which that component appears in the photon, and then develop a detailed model which includes contributions from light vector mesons and from excited virtual states described in a quark-gluon basis. The parton distribution functions which appear can be related approximately to those in the pion, while a weighted sum gives the distribution functions for the photon. We use the model to make improved QCD-based predictions for the total inelastic photon-nucleon and photon-nucleus cross sections at energies relevant for HERA experiments and cosmic ray observations. We emphasize the importance in this procedure of including a soft-scattering background such that the calculated cross sections join smoothly with low-energy data.Comment: 34 pages, 6 figs. available on request from honjo@wishep. bitnet, MAD/TH/91-57, submitted to Phys. Rev.
    corecore