83 research outputs found

    Climate change adaptation, flood risks and policy coherence in integrated water resources management in England

    Get PDF
    Integrated water resources management (IWRM) assumes coherence between cognate aspects of water governance at the river basin scale, for example water quality, energy production and agriculture objectives. But critics argue that IWRM is often less ‘integrated’ in practice, raising concerns over inter-sectoral coherence between implementing institutions. One increasingly significant aspect of IWRM is adaptation to climate change-related risks, including threats from flooding, which are particularly salient in England. Although multiple institutional mechanisms exist for flood risk management (FRM), their coherence remains a critical question for national adaptation. This paper therefore (1) maps the multi-level institutional frameworks determining both IWRM and FRM in England; (2) examines their interaction via various inter-institutional coordinating mechanisms; and (3) assesses the degree of coherence. The analysis suggests that cognate EU strategic objectives for flood risk assessment demonstrate relatively high vertical and horizontal coherence with river basin planning. However, there is less coherence with flood risk requirements for land-use planning and national flood protection objectives. Overall, this complex governance arrangement actually demonstrates de-coherence over time due to ongoing institutional fragmentation. Recommendations for increasing IWRM coherence in England or re-coherence based on greater spatial planning and coordination of water-use and land-use strategies are proposed

    Climatic risks and impacts in South Asia: extremes of water scarcity and excess

    Get PDF
    This paper reviews the current knowledge of climatic risks and impacts in South Asia associated with anthropogenic warming levels of 1.5°C to 4°C above pre-industrial values in the 21st century. It is based on the World Bank Report “Turn Down the Heat, Climate Extremes, Regional Impacts and the Case for Resilience” (2013). Many of the climate change impacts in the region, which appear quite severe even with relatively modest warming of 1.5–2°C, pose significant hazards to development. For example, increased monsoon variability and loss or glacial meltwater will likely confront populations with ongoing and multiple challenges. The result is a significant risk to stable and reliable water resources for the region, with increases in peak flows potentially causing floods and dry season flow reductions threatening agriculture. Irrespective of the anticipated economic development and growth, climate projections indicate that large parts of South Asia’s growing population and especially the poor are likely to remain highly vulnerable to climate change

    Lipid Composition of the Human Eye: Are Red Blood Cells a Good Mirror of Retinal and Optic Nerve Fatty Acids?

    Get PDF
    International audienceBACKGROUND: The assessment of blood lipids is very frequent in clinical research as it is assumed to reflect the lipid composition of peripheral tissues. Even well accepted such relationships have never been clearly established. This is particularly true in ophthalmology where the use of blood lipids has become very common following recent data linking lipid intake to ocular health and disease. In the present study, we wanted to determine in humans whether a lipidomic approach based on red blood cells could reveal associations between circulating and tissue lipid profiles. To check if the analytical sensitivity may be of importance in such analyses, we have used a double approach for lipidomics. METHODOLOGY AND PRINCIPAL FINDINGS: Red blood cells, retinas and optic nerves were collected from 9 human donors. The lipidomic analyses on tissues consisted in gas chromatography and liquid chromatography coupled to an electrospray ionization source-mass spectrometer (LC-ESI-MS). Gas chromatography did not reveal any relevant association between circulating and ocular fatty acids except for arachidonic acid whose circulating amounts were positively associated with its levels in the retina and in the optic nerve. In contrast, several significant associations emerged from LC-ESI-MS analyses. Particularly, lipid entities in red blood cells were positively or negatively associated with representative pools of retinal docosahexaenoic acid (DHA), retinal very-long chain polyunsaturated fatty acids (VLC-PUFA) or optic nerve plasmalogens. CONCLUSIONS AND SIGNIFICANCE: LC-ESI-MS is more appropriate than gas chromatography for lipidomics on red blood cells, and further extrapolation to ocular lipids. The several individual lipid species we have identified are good candidates to represent circulating biomarkers of ocular lipids. However, further investigation is needed before considering them as indexes of disease risk and before using them in clinical studies on optic nerve neuropathies or retinal diseases displaying photoreceptors degeneration

    The challenge of unprecedented floods and droughts in risk management

    Get PDF
    Risk management has reduced vulnerability to floods and droughts globally1,2, yet their impacts are still increasing3. An improved understanding of the causes of changing impacts is therefore needed, but has been hampered by a lack of empirical data4,5. On the basis of a global dataset of 45 pairs of events that occurred within the same area, we show that risk management generally reduces the impacts of floods and droughts but faces difficulties in reducing the impacts of unprecedented events of a magnitude not previously experienced. If the second event was much more hazardous than the first, its impact was almost always higher. This is because management was not designed to deal with such extreme events: for example, they exceeded the design levels of levees and reservoirs. In two success stories, the impact of the second, more hazardous, event was lower, as a result of improved risk management governance and high investment in integrated management. The observed difficulty of managing unprecedented events is alarming, given that more extreme hydrological events are projected owing to climate change3

    An integrated approach of flood risk assessment in the eastern part of Dhaka City

    No full text
    The flood risk is a function of the flood hazard, the exposed values, and their vulnerability. In addition to extreme hydrological events, different anthropogenic activities such as extensive urbanization and land use play an important role in producing catastrophic floods. Considerations of both physical and social dimensions are therefore equally important in flood risk assessment. However, very often the risk assessment studies focus either on physical or social dimensions. In addition, the available studies often focus on economic valuation of only direct tangible costs. In this study, we provide an integrated flood risk assessment approach that goes beyond the valuation of direct tangible costs, through incorporating physical dimensions in hazard and exposure and social dimensions in vulnerability. The method has been implemented in the Dhaka City, Bangladesh, an area internationally recognized as hot spot for flood risk. In this study, flood hazards for different return periods are calculated in spatial environment using a hydrologic model, HEC-RAS. Vulnerability is assessed through aggregation of various social dimensions, i.e., coping and adaptive capacities, and susceptibility. We assess vulnerability for both baseline and improved scenarios. In the baseline scenario, current early warning for study area is considered. In the alternative scenario, the warning system is expected to improve. Aggregating hazard, exposure and vulnerability, risk maps (in terms of both tangible and intangible costs) of several return period floods are produced for both baseline and improved scenarios. Compared to traditional assessments, the integrated assessment approach used in this study generates more information about the flood risk. Consequently, the results are useful in evaluating policy alternatives and minimizing property loss in the study area.The flood risk is a function of the flood hazard, the exposed values, and their vulnerability. In addition to extreme hydrological events, different anthropogenic activities such as extensive urbanization and land use play an important role in producing catastrophic floods. Considerations of both physical and social dimensions are therefore equally important in flood risk assessment. However, very often the risk assessment studies focus either on physical or social dimensions. In addition, the available studies often focus on economic valuation of only direct tangible costs. In this study, we provide an integrated flood risk assessment approach that goes beyond the valuation of direct tangible costs, through incorporating physical dimensions in hazard and exposure and social dimensions in vulnerability. The method has been implemented in the Dhaka City, Bangladesh, an area internationally recognized as hot spot for flood risk. In this study, flood hazards for different return periods are calculated in spatial environment using a hydrologic model, HEC-RAS. Vulnerability is assessed through aggregation of various social dimensions, i.e., coping and adaptive capacities, and susceptibility. We assess vulnerability for both baseline and improved scenarios. In the baseline scenario, current early warning for study area is considered. In the alternative scenario, the warning system is expected to improve. Aggregating hazard, exposure and vulnerability, risk maps (in terms of both tangible and intangible costs) of several return period floods are produced for both baseline and improved scenarios. Compared to traditional assessments, the integrated assessment approach used in this study generates more information about the flood risk. Consequently, the results are useful in evaluating policy alternatives and minimizing property loss in the study area
    • 

    corecore